## Similar Ebooks

Published nearly forty years after the first edition, this long-awaited Second Edition also:

Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincaré–Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first editionThis widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.

Those familiar with mathematics texts will note the fine illustrations throughout and large number of problems offered at the chapter ends. An answer section is provided. Students weary of plodding mathematical prose will find Professor Flanigan's style as refreshing and stimulating as his approach.

Though the Japanese abacus may appear mysterious or even primitive, this intriguing tool is capable of amazing speed and accuracy. it is still widely used throughout the shop and markets of Asia and its popularity shows no sign of decline.

This volume is designed for the student desiring a greater understanding of the abacus and its calculative functions. The text provides thorough explanations of the advanced operations involving negative numbers, decimals, different units of measurement, and square roots. Diagrams illustrate bead manipulation, and numerous exercises provide ample practice.

Concise and easy-to-follow, this book will improve your abacus skills and help you perform calculations with greater efficiency and precision.

The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work. Mathematicians are probably several decades away from a complete understanding of those functions. More than half of the material in the book is on q-series, including mock theta functions; the remaining part deals with theta function identities, modular equations, incomplete elliptic integrals of the first kind and other integrals of theta functions, Eisenstein series, particular values of theta functions, the Rogers-Ramanujan continued fraction, other q-continued fractions, other integrals, and parts of Hecke's theory of modular forms.

- Includes both polar coordinates and complex numbers, unlike the competition.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression.

In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest.

The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Over the past thirty years, this theory has contributed to major advances in geometry and analysis including, for example, the original proof of the positive mass conjecture in cosmology.

This third edition of Geometric Measure Theory: A Beginner's Guide presents, for the first time in print, the proofs of the double bubble and the hexagonal honeycomb conjectures. Four new chapters lead the reader through treatments of the Weaire-Phelan counterexample of Kelvin's conjecture, Almgren's optimal isoperimetric inequality, and immiscible fluids and crystals. The abundant illustrations, examples, exercises, and solutions in this book will enhance its reputation as the most accessible introduction to the subject.

Since many abstractions and generalizations originate with the real line, the author has made it the unifying theme of the text, constructing the real number system from the point of view of a Cauchy sequence (a step which Dr. Sprecher feels is essential to learn what the real number system is).

The material covered in Elements of Real Analysis should be accessible to those who have completed a course in calculus. To help give students a sound footing, Part One of the text reviews the fundamental concepts of sets and functions and the rational numbers. Part Two explores the real line in terms of the real number system, sequences and series of number and the structure of point sets. Part Three examines the functions of a real variable in terms of continuity, differentiability, spaces of continuous functions, measure and integration, and the Fourier series.

An especially valuable feature of the book is the exercises which follow each section. There are over five hundred, ranging from the simple to the highly difficult, each focusing on a concept previously introduced.

M. R. Hestenes in Journal of Optimization Theory and Applications

"The work intertwines in masterly fashion results of classical analysis, topology, and the theory of manifolds and thus presents a comprehensive treatise of the theory of multiple integral variational problems."

L. Schmetterer in Monatshefte für Mathematik

"The book is very clearly exposed and contains the last modern theory in this domain. A comprehensive bibliography ends the book."

M. Coroi-Nedeleu in Revue Roumaine de Mathématiques Pures et Appliquées

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, DaniellLebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?

Suitable for advanced undergraduates and graduate students in mathematics, this volume's sole prerequisite is a background in measure theory. The distinguished mathematician E. R. Lorch praised the book in the Bulletin of the American Mathematical Society as "an exposition which is always fresh, proofs which are sophisticated, and a choice of subject matter which is certainly timely."

Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes.

In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions.

Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.

The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.

Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, DaniellLebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?

The book is suitable for graduate students, but also for advanced undergraduates, in mathematics and physics.

Contents:

List of Figures

Basic Notation

Choice Principles

Hilbert Spaces

Completeness, Completion and Dimension

Linear Operators

Functionals and Dual Spaces

Fourier Series

Fourier Transform

Fixed Point Theorem

Baire Category Theorem

Uniform Boundedness Principle

Open Mapping Theorem

Closed Graph Theorem

Hahn–Banach Theorem

The Adjoint Operator

Weak Topologies and Reflexivity

Operators in Hilbert Spaces

Spectral Theory of Operators on Hilbert Spaces

Compactness

Bibliography

Index

"...complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." -Zentralblatt MATH

A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered.

Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as:

A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science Additional exercises at varying levels of difficulty to further test comprehension of the presented material End-of-chapter literature reviews that summarize each topic and offer additional sources for further studyTheory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.

A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as: • A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science • Additional exercises at varying levels of difficulty to further test comprehension of the presented material • End-of-chapter literature reviews that summarize each topic and offer additional sources for further study Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.Generations of teachers and students have benefitted from Artin's masterly arguments and precise results. Suitable for advanced undergraduates and graduate students of mathematics, his treatment examines functions, the Euler integrals and the Gauss formula, large values of x and the multiplication formula, the connection with sin x, applications to definite integrals, and other subjects.

The author intended this book not only to develop the basic ideas of Riemann's theory of algebraic functions and their integrals but also to examine the related ideas and theorems with an unprecedented degree of rigor. Weyl's two-part treatment begins by defining the concept and topology of Riemann surfaces and concludes with an exploration of functions of Riemann surfaces. His teachings illustrate the role of Riemann surfaces as not only devices for visualizing the values of analytic functions but also as indispensable components of the theory.

The two-part structure of Applied Complex Variables affords the college instructor maximum classroom flexibility. Once fundamentals are mastered, applications can be studied in any sequence desired. Depending on how many are selected for study, Professor Dettman's impressive text is ideal for either a one- or two-semester course. And, of course, the ambitious student possessing a knowledge of basic calculus will find its straightforward approach rewarding to his independent study efforts.

Applied Complex Variables is a cogent, well-written introduction to an important and exciting branch of advanced mathematics — serving both the theoretical needs of the mathematics specialist and the applied math needs of the physicist and engineer. Students and teachers alike will welcome this timely, moderately priced reissue of a widely respected work.

This book develops the abstract theory along with a well-chosen selection of concrete examples that exemplify the results and show the breadth of their applicability. After a preliminary chapter containing the necessary background material on Banach algebras and spectral theory, the text sets out the general theory of locally compact groups and their unitary representations, followed by a development of the more specific theory of analysis on Abelian groups and compact groups. There is an extensive chapter on the theory of induced representations and its applications, and the book concludes with a more informal exposition on the theory of representations of non-Abelian, non-compact groups.

Featuring extensive updates and new examples, the Second Edition:

Adds a short section on von Neumann algebras Includes Mark Kac’s simple proof of a restricted form of Wiener’s theorem Explains the relation between SU(2) and SO(3) in terms of quaternions, an elegant method that brings SO(4) into the picture with little effort Discusses representations of the discrete Heisenberg group and its central quotients, illustrating the Mackey machine for regular semi-direct products and the pathological phenomena for nonregular onesA Course in Abstract Harmonic Analysis, Second Edition serves as an entrée to advanced mathematics, presenting the essentials of harmonic analysis on locally compact groups in a concise and accessible form.

The author devotes the first four chapters to proofs of classical theorems on boundary values and boundary integral representations of analytic functions in the unit disc, including generalizations to Dirichlet algebras. The fifth chapter contains the factorization theory of Hp functions, a discussion of some partial extensions of the factorization, and a brief description of the classical approach to the theorems of the first five chapters. The remainder of the book addresses the structure of various Banach spaces and Banach algebras of analytic functions in the unit disc.

Enhanced with 100 challenging exercises, a bibliography, and an index, this text belongs in the libraries of students, professional mathematicians, as well as anyone interested in a rigorous, high-level treatment of this topic.

Subsequent chapters explore the basic results of linear functional analysis: Stone-Weierstrass, Hahn-Banach, uniform boundedness and open mapping theorems, dual spaces, and basic properties of operators. Additional topics include function spaces, the Tychonov and Alaoglu theorems, Hilbert spaces, elementary Fourier analysis, and compact self-adjoint operators applied to Sturm-Liouville theory. "The author has a delightfully lively style which makes the book very readable," noted the Edinburgh Mathematical Society, "and there are numerous interesting and instructive problems."

Professor Cohn's lucid and insightful book presents an ideal coverage of the subject in five parts. Part I is a review of complex analysis analytic behavior, the Riemann sphere, geometric constructions, and presents (as a review) a microcosm of the course. The Riemann manifold is introduced in Part II and is examined in terms of intuitive physical and topological technique in Part III. In Part IV the author shows how to define real functions on manifolds analogously with the algebraic and analytic points of view outlined here. The exposition returns in Part V to the use of a single complex variable z. As the text is richly endowed with problem material — 344 exercises — the book is perfect for self-study as well as classroom use.

Harvey Cohn is well-known in the mathematics profession for his pedagogically superior texts, and the present book will be of great interest not only to pure and applied mathematicians, but also engineers and physicists. Dr. Cohn is currently Distinguished Professor of Mathematics at the City University of New York Graduate Center.

Slay the calculus monster with this user-friendly guide

Calculus For Dummies, 2nd Edition makes calculus manageable—even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be.

Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is—simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win.

Includes foundations in algebra, trigonometry, and pre-calculus concepts Explores sequences, series, and graphing common functions Instructs you how to approximate area with integration Features things to remember, things to forget, and things you can't get away withStop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there.

Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study.

Offers a concise yet rigorous introduction

Requires limited background in control theory or advanced mathematics

Provides a complete proof of the maximum principle

Uses consistent notation in the exposition of classical and modern topics

Traces the historical development of the subject

Solutions manual (available only to teachers)

Leading universities that have adopted this book include:

University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems

Georgia Institute of Technology ECE 6553: Optimal Control and Optimization

University of Pennsylvania ESE 680: Optimal Control Theory

University of Notre Dame EE 60565: Optimal Control

The first eight chapters explore all of the basic topics for training in real analysis, beginning with a review of countable sets before moving on to detailed discussions of measure theory, Lebesgue integration, Banach spaces, functional analysis, and weakly differentiable functions. More topical applications are discussed in the remaining chapters, such as maximal functions, functions of bounded mean oscillation, rearrangements, potential theory, and the theory of Sobolev functions. This second edition has been completely revised and updated and contains a variety of new content and expanded coverage of key topics, such as new exercises on the calculus of distributions, a proof of the Riesz convolution, Steiner symmetrization, and embedding theorems for functions in Sobolev spaces.

Ideal for either classroom use or self-study, Real Analysis is an excellent textbook both for students discovering real analysis for the first time and for mathematicians and researchers looking for a useful resource for reference or review.

Praise for the First Edition:

“[This book] will be extremely useful as a text. There is certainly enough material for a year-long graduate course, but judicious selection would make it possible to use this most appealing book in a one-semester course for well-prepared students.”

—Mathematical Reviews

The book takes a motivating approach that makes ideas less abstract to students. It explains how various topics in calculus may seem unrelated but in reality have common roots. Emphasizing historical perspectives, the text gives students a glimpse into the development of calculus and its ideas from the age of Newton and Leibniz to the twentieth century. Nearly 300 examples lead to important theorems as well as help students develop the necessary skills to closely examine the theorems. Proofs are also presented in an accessible way to students.

By strengthening skills gained through elementary calculus, this textbook leads students toward mastering calculus techniques. It will help them succeed in their future mathematical or engineering studies.

While retaining the structure of its best-selling predecessor, this second edition includes revisions of many original examples, along with new examples that often reflect the authors’ own vast research experiences and perspectives. This edition also provides many more exercises as well as a solutions manual for qualifying instructors. Each chapter begins with an extensive introduction and concludes with a summary and historical comments that frequently refer to other sources.

New to the Second Edition

Completely revised section on lim sup and lim inf New discussions of connected sets, probability, Bayesian statistical inference, and the generalized (integral) Minkowski inequality New sections on elements of multilinear algebra and determinants, the singular value decomposition theorem, the Cauchy principal value, and Hadamard finite part integrals New example of a Lebesgue non-measurable set

Ideal for a two-semester course, this proven textbook teaches students how to prove theorems and prepares them for further study of more advanced mathematical topics. It helps them succeed in formulating research questions in a mathematically rigorous way.

Starting with the theory of weighted Sobolev spaces, this treatment advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and chapters 8 through 14 form the core of the nonlinear potential theory of superharmonic functions. Topics include balayage; Perron's method, barriers, and resolutivity; polar sets; harmonic measure; fine topology; harmonic morphisms; and quasiregular mappings. The text concludes with explorations of axiomatic nonlinear potential theory and helpful appendixes.

Originally published in 1972.

The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.