Similar ebooks

Computer Science and Scientific Computing contains the proceedings of the Third ICASE Conference on Scientific Computing held in Williamsburg, Virginia, on April l and 2, 1976, under the auspices of the Institute for Computer Applications in Systems Engineering at the NASA Langley Research Center. The conference provided a forum for reviewing all the aspects of scientific computing and covered topics ranging from computer-aided design (CAD) and computer science technology to the design of large hydrodynamics codes. Case studies in reliable computing are also presented.

Comprised of 13 chapters, this book begins with an introduction to the use of the hierarchical family concept in the development of scientific programming systems. The discussion then turns to the data structures of scientific computing and their representation and management; some important CAD capabilities required to support aerospace design in the areas of interactive support, information management, and computer hardware advances as well as some computer science developments which may contribute significantly to making such capabilities possible; and the use of symbolic computation systems for problem solving in scientific research. Subsequent chapters deal with computer applications in astrophysics; the possibility of computing turbulence and numerical wind tunnels; and the basis for a general-purpose program for finite element analysis. Software tools for computer graphics are also considered.

This monograph will be of value to scientists, systems designers and engineers, and students in computer science who have an interest in the subject of scientific computing.
Although the origins of parallel computing go back to the last century, it was only in the 1970s that parallel and vector computers became available to the scientific community. The first of these machines-the 64 processor llliac IV and the vector computers built by Texas Instruments, Control Data Corporation, and then CRA Y Research Corporation-had a somewhat limited impact. They were few in number and available mostly to workers in a few government laboratories. By now, however, the trickle has become a flood. There are over 200 large-scale vector computers now installed, not only in government laboratories but also in universities and in an increasing diversity of industries. Moreover, the National Science Foundation's Super computing Centers have made large vector computers widely available to the academic community. In addition, smaller, very cost-effective vector computers are being manufactured by a number of companies. Parallelism in computers has also progressed rapidly. The largest super computers now consist of several vector processors working in parallel. Although the number of processors in such machines is still relatively small (up to 8), it is expected that an increasing number of processors will be added in the near future (to a total of 16 or 32). Moreover, there are a myriad of research projects to build machines with hundreds, thousands, or even more processors. Indeed, several companies are now selling parallel machines, some with as many as hundreds, or even tens of thousands, of processors.
With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including:

• Embedded & searchable equations, figures & tables
• Math XML
• Index with linked pages numbers for easy reference
• Redrawn full color figures to allow for easier identification

Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students.

The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal twoï¿1?2 or threeï¿1?2 semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. ... Evans' book is evidence of his mastering of the field and the clarity of presentation. --Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ... Every graduate student in analysis should read it. --David Jerison, MIT I usePartial Differential Equationsto prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ... I am very happy with the preparation it provides my students. --Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ... An outstanding reference for many aspects of the field. --Rafe Mazzeo, Stanford University
This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis.

Foundations of Applied Mathematics, Volume 1: Mathematical Analysis?includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?
Designed for use by first-year graduate students from a variety of engineering and scientific disciplines, this comprehensive textbook covers the solution of linear systems, least squares problems, eigenvalue problems, and the singular value decomposition. The author, who helped design the widely-used LAPACK and ScaLAPACK linear algebra libraries, draws on this experience to present state-of-the-art techniques for these problems, including recommendations of which algorithms to use in a variety of practical situations. Algorithms are derived in a mathematically illuminating way, including condition numbers and error bounds. Direct and iterative algorithms, suitable for dense and sparse matrices, are discussed. Algorithm design for modern computer architectures, where moving data is often more expensive than arithmetic operations, is discussed in detail, using LAPACK as an illustration. There are many numerical examples throughout the text and in the problems at the ends of chapters, most of which are written in Matlab and are freely available on the Web. Demmel discusses several current research topics, making students aware of both the lively research taking place and connections to other parts of numerical analysis, mathematics, and computer science. Some of this material is developed in questions at the end of each chapter, which are marked Easy, Medium, or Hard according to their difficulty. Some questions are straightforward, supplying proofs of lemmas used in the text. Others are more difficult theoretical or computing problems. Questions involving significant amounts of programming are marked Programming. The computing questions mainly involve Matlab programming, and others involve retrieving, using, and perhaps modifying LAPACK code from NETLIB.
This invaluable textbook presents a comprehensive introduction to modern competitive programming. The text highlights how competitive programming has proven to be an excellent way to learn algorithms, by encouraging the design of algorithms that actually work, stimulating the improvement of programming and debugging skills, and reinforcing the type of thinking required to solve problems in a competitive setting. The book contains many “folklore” algorithm design tricks that are known by experienced competitive programmers, yet which have previously only been formally discussed in online forums and blog posts.

Topics and features: reviews the features of the C++ programming language, and describes how to create efficient algorithms that can quickly process large data sets; discusses sorting algorithms and binary search, and examines a selection of data structures of the C++ standard library; introduces the algorithm design technique of dynamic programming, and investigates elementary graph algorithms; covers such advanced algorithm design topics as bit-parallelism and amortized analysis, and presents a focus on efficiently processing array range queries; surveys specialized algorithms for trees, and discusses the mathematical topics that are relevant in competitive programming; examines advanced graph techniques, geometric algorithms, and string techniques; describes a selection of more advanced topics, including square root algorithms and dynamic programming optimization.

This easy-to-follow guide is an ideal reference for all students wishing to learn algorithms, and practice for programming contests. Knowledge of the basics of programming is assumed, but previous background in algorithm design or programming contests is not necessary. Due to the broad range of topics covered at various levels of difficulty, this book is suitable for both beginners and more experienced readers.

©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.