Similar ebooks

Since Valasek's discovery of the ferroelectric properties of Rochelle salt nearly 60 years ago, ferroelectricity has been regarded as one of the tradi tional branches of dielectric physics. It has had important applications in lattice dynamics, quantum electronics, and nonlinear optics. The study of electron processes in ferroelectrics was begun with VUL's investigations of the ferroelectric properties of barium titanate [1.1]. In trinsic and extrinsic optical absorption, band structure, conductivity and photoconductivity, carrier mobility. and transport mechanisms were examined in this compound, and in other perovskite ferroelectric semiconductors. An important discovery was that of the highly photosensitive photoconducting ferroelectrics of type AVBVICVIII (e.g. SbSI) by MERZ et al. in 1962 [1.2,3]. A large number of ferroelectric semiconductors (some photosensitive, some not) are now known, including broad-band materials (e.g. lithium niobate, lithium tantalate, barium and strontium niobate, and type-A~B~I compounds), BI and narrow-band semiconductors (e.g. type_AIVB compounds). A series of improper ferroelectric semiconductors and photosensitive ferroelastics have been discovered, of which Sb 0 I is an example. s 7 Owing to the uncertainty of their band structure, the difficulty in deter mining the nature of the levels, the complexity of alloying, and their gen erally low mobility values, ferroelectrics are rarely of interest regarded as nonlinear semiconductors. The most fruitful approach has been the study of the influence of electrons (especially nonequilibrium electrons) and electron excitations on phase transitions and ferroelectric properties. A large group of phenomena have recently been discovered and investigated.
Nikola Tesla was a major contributor to the electrical revolution that transformed daily life at the turn of the twentieth century. His inventions, patents, and theoretical work formed the basis of modern AC electricity, and contributed to the development of radio and television. Like his competitor Thomas Edison, Tesla was one of America's first celebrity scientists, enjoying the company of New York high society and dazzling the likes of Mark Twain with his electrical demonstrations. An astute self-promoter and gifted showman, he cultivated a public image of the eccentric genius. Even at the end of his life when he was living in poverty, Tesla still attracted reporters to his annual birthday interview, regaling them with claims that he had invented a particle-beam weapon capable of bringing down enemy aircraft.

Plenty of biographies glamorize Tesla and his eccentricities, but until now none has carefully examined what, how, and why he invented. In this groundbreaking book, W. Bernard Carlson demystifies the legendary inventor, placing him within the cultural and technological context of his time, and focusing on his inventions themselves as well as the creation and maintenance of his celebrity. Drawing on original documents from Tesla's private and public life, Carlson shows how he was an "idealist" inventor who sought the perfect experimental realization of a great idea or principle, and who skillfully sold his inventions to the public through mythmaking and illusion.

This major biography sheds new light on Tesla's visionary approach to invention and the business strategies behind his most important technological breakthroughs.

“The story of one of the most prolific, independent, and iconoclastic inventors of this century . . . fascinating.”--Scientific American

Nikola Tesla (1856-1943), credited as the inspiration for radio, robots, and even radar, has been called the patron saint of modern electricity. Based on original material and previously unavailable documents, this acclaimed book is the definitive biography of the man considered by many to be the founding father of modern electrical technology. Among Tesla’s creations were the channeling of alternating current, fluorescent and neon lighting, wireless telegraphy, and the giant turbines that harnessed the power of Niagara Falls.

This essential biography is illustrated with sixteen pages of photographs, including the July 20, 1931, Time magazine cover for an issue celebrating the inventor’s career.

“A deep and comprehensive biography of a great engineer of early electrical science--likely to become the definitive biography. Highly recommended.”--American Association for the Advancement of Science

“Seifer's vivid, revelatory, exhaustively researched biography rescues pioneer inventor Nikola Tesla from cult status and restores him to his rightful place as a principal architect of the modern age.” --Publishers Weekly Starred Review

“[Wizard] brings the many complex facets of [Tesla's] personal and technical life together in to a cohesive whole....I highly recommend this biography of a great technologist.” --A.A. Mullin, U.S. Army Space and Strategic Defense Command, COMPUTING REVIEWS

“[Along with A Beautiful Mind] one of the five best biographies written on the brilliantly disturbed.”--WALL STREET JOURNAL

“Wizard is a compelling tale presenting a teeming, vivid world of science, technology, culture and human lives.”--NEW SCIENTIST

“Marc Seifer is an excellent writer and scholar, who has produced a wonderfully readable and illuminating biography of one of the most intriguing men of this century...mak[ing] us understand not only the man, but also the times in which he lived....[A] masterpiece.”--NELSON DEMILLE

“The author presents much new material...[and] bases his book on a large number of archival and primary sources....Underneath the layers of hero worship, the core of Seifer's book is a serious piece of scholarship.” --Ronald Kline, SCIENTIFIC AMERICAN

“Seifer has done a remarkable job going through all the Tesla manuscripts...ferret[ing] out hundreds of newspaper and magazine articles in which he traces out Tesla's public image [and] offers a reasonable reconstruction of Tesla's emotional world...Seifer has significantly advanced our understanding of Tesla.”--Bernard Carlson, author of Tesla: Inventor of the Electrical Age, for ISIS

“It is my opinion that Dr. Seifer leads the world as the most authoritative of all the Tesla researchers.”--J.W. McGINNIS, President, International Tesla Society

“Far and away the best job among Tesla biographies.”--Jeffrey D. Kooistra, INFINITE ENERGY

“Wizard is...utterly absorbing with chapters charting all stages of Tesla's life...Seifer treats his prodigious subject with sympathy and realism.”--NEXUS

“Wizard...presents a much more accurate...picture of Tesla.... [It] is thorough, informative, entertaining and a valuable addition to electrotechnological history, past and future.”--ELECTRONIC ENGINEERING TIMES

“In modern times, Tesla may be enjoying a comeback thanks to books like Wizard.”--THE NEW YORK TIMES
The gripping history of electricity and how the fateful collision of Thomas Edison, Nikola Tesla, and George Westinghouse left the world utterly transformed.

In the final decades of the nineteenth century, three brilliant and visionary titans of America’s Gilded Age—Thomas Edison, Nikola Tesla, and George Westinghouse—battled bitterly as each vied to create a vast and powerful electrical empire. In Empires of Light, historian Jill Jonnes portrays this extraordinary trio and their riveting and ruthless world of cutting-edge science, invention, intrigue, money, death, and hard-eyed Wall Street millionaires. At the heart of the story are Thomas Alva Edison, the nation’s most famous and folksy inventor, creator of the incandescent light bulb and mastermind of the world’s first direct current electrical light networks; the Serbian wizard of invention Nikola Tesla, elegant, highly eccentric, a dreamer who revolutionized the generation and delivery of electricity; and the charismatic George Westinghouse, Pittsburgh inventor and tough corporate entrepreneur, an industrial idealist who in the era of gaslight imagined a world powered by cheap and plentiful electricity and worked heart and soul to create it.

Edison struggled to introduce his radical new direct current (DC) technology into the hurly-burly of New York City as Tesla and Westinghouse challenged his dominance with their alternating current (AC), thus setting the stage for one of the eeriest feuds in American corporate history, the War of the Electric Currents. The battlegrounds: Wall Street, the 1893 Chicago World’s Fair, Niagara Falls, and, finally, the death chamber—Jonnes takes us on the tense walk down a prison hallway and into the sunlit room where William Kemmler, convicted ax murderer, became the first man to die in the electric chair.
In Radical Evolution, bestselling author Joel Garreau, a reporter and editor for the Washington Post, shows us that we are at an inflection point in history. As you read this, we are engineering the next stage of human evolution. Through advances in genetic, robotic, information and nanotechnologies, we are altering our minds, our memories, our metabolisms, our personalities, our progeny–and perhaps our very souls.

Taking us behind the scenes with today's foremost researchers and pioneers, Garreau reveals that the super powers of our comic-book heroes already exist, or are in development in hospitals, labs, and research facilities around the country -- from the revved up reflexes and speed of Spider-Man and Superman, to the enhanced mental acuity and memory capabilities of an advanced species.

Over the next fifteen years, Garreau makes clear, these enhancements will become part of our everyday lives. Where will they lead us? To heaven–where technology’s promise to make us smarter, vanquish illness and extend our lives is the answer to our prayers? Or will they lead us, as some argue, to hell — where unrestrained technology brings about the ultimate destruction of our entire species? With the help and insights of the gifted thinkers and scientists who are making what has previously been thought of as science fiction a reality, Garreau explores how these developments, in our lifetime, will affect everything from the way we date to the way we work, from how we think and act to how we fall in love. It is a book about what our world is becoming today, not fifty years out. As Garreau cautions, it is only by anticipating the future that we can hope to shape it.
This Third Edition of the book contains more than 60 new problems over and above the original 480 problems of the Second Edition. The additional problems cover the whole range of new topics which will also be introduced in the third edition of the author’s main textbook titled Electromagnetism: Theory and Applications. There are some other new problems necessary to further enhance the understanding of the topics of importance already existing in the book. There has been no change in the philosophy of this book. It has been designed to serve as a companion volume to the main text to help students gain a thorough quantitative understanding of EM concepts that are somewhat difficult to learn. The problems included, as a result of the author’s long industrial and academic experience, illuminate the concepts developed in the main text. Besides meeting the needs of undergraduate students of electrical engineering and postgraduate students and researchers in physics, the book will also be immensely useful to engineers and applied physicists in industry. WHAT IS NEW TO THIS EDITION? 1. A number of new problems on evaluation of a.c. resistance and reactance due to skin effect in cylindrical transmission line configurations, for which the cylindrical polar coordinate system cannot be used. 2. New problems on design and optimization of permanent magnets (now being used in the development of new permanent magnet machines) by using Fröhlich–Kennelly equation for representing the demagnetizing curve and Evershed criterion for optimizing the magnet dimensions and its material volume. 3. Some problems on applications of vector analysis to different geometrical configurations. 4. Some problems on Electrostatics and Magnetostatics in which the method of images has been used as auxiliary support. 5. Nearly 18–20 new problems in the chapter on Electromagnetic Induction making it fully comprehensive and covering all facets of electromagnetic induction. This chapter now contains more than 60 solved problems, none of which are of the formula substitution type, and include problems ranging from annular homopolar machines to phenomenon of pinch effect, identification and separation of flux-linkage as well as flux cutting effects, etc. 6. Some problem on Electromagnetic Waves dealing with surface current speed. 7. Problems on Lorentz transformation in the chapter titled Electromagnetism and Special Relativity.
The bestselling author of E=mc2 weaves tales of romance, divine inspiration, and fraud through an account of the invisible force that permeates our universe—electricity—and introduces us to the virtuoso scientists who plumbed its secrets.

For centuries, electricity was seen as little more than a curious property of certain substances that sparked when rubbed. Then, in the 1790s, Alessandro Volta began the scientific investigation that ignited an explosion of knowledge and invention. The force that once seemed inconsequential was revealed to be responsible for everything from the structure of the atom to the functioning of our brains. In harnessing its power, we have created a world of wonders—complete with roller coasters and radar, computer networks and psychopharmaceuticals.

In Electric Universe, the great discoverers come to life in all their brilliance and idiosyncrasy, including the visionary Michael Faraday, who struggled against the prejudices of the British class system, and Samuel Morse, a painter who, before inventing the telegraph, ran for mayor of New York City on a platform of persecuting Catholics. Here too is Alan Turing, whose dream of a marvelous thinking machine—what we know as the computer—was met with indifference, and who ended his life in despair after British authorities forced him to undergo experimental treatments to “cure” his homosexuality.

From the frigid waters of the Atlantic to the streets of Hamburg during a World War II firestorm to the interior of the human body, Electric Universe is a mesmerizing journey of discovery.
This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems.

Offers a complete treatment of classical electromagnetism
Emphasizes physical ideas
Separates the treatment of electromagnetism in vacuum and material media
Presents key formulas in both SI and Gaussian units
Covers applications to other areas of physics
Includes more than 300 problems
In the face of today's environmental and economic challenges, doomsayers preach that the only way to stave off disaster is for humans to reverse course: to de-industrialize, re-localize, ban the use of modern energy sources, and forswear prosperity. But in this provocative and optimistic rebuke to the catastrophists, Robert Bryce shows how innovation and the inexorable human desire to make things Smaller Faster Lighter Denser Cheaper is providing consumers with Cheaper and more abundant energy, Faster computing, Lighter vehicles, and myriad other goods. That same desire is fostering unprecedented prosperity, greater liberty, and yes, better environmental protection.

Utilizing on-the-ground reporting from Ottawa to Panama City and Pittsburgh to Bakersfield, Bryce shows how we have, for centuries, been pushing for Smaller Faster solutions to our problems. From the vacuum tube, mass-produced fertilizer, and the printing press to mobile phones, nanotech, and advanced drill rigs, Bryce demonstrates how cutting-edge companies and breakthrough technologies have created a world in which people are living longer, freer, healthier, lives than at any time in human history.

The push toward Smaller Faster Lighter Denser Cheaper is happening across multiple sectors. Bryce profiles innovative individuals and companies, from long-established ones like Ford and Intel to upstarts like Aquion Energy and Khan Academy. And he zeroes in on the energy industry, proving that the future belongs to the high power density sources that can provide the enormous quantities of energy the world demands.

The tools we need to save the planet aren't to be found in the technologies or lifestyles of the past. Nor must we sacrifice prosperity and human progress to ensure our survival. The catastrophists have been wrong since the days of Thomas Malthus. This is the time to embrace the innovators and businesses all over the world who are making things Smaller Faster Lighter Denser Cheaper.
This book [earlier titled as Electromagnetism: Theory and Applications which is bifurcated into two volumes: Electromagnetism: Theory and Electromagnetism: Applications (Magnetic Diffusion and Electromagnetic Waves) has been updated to cover some additional aspects of theory and nearly all modern applications. The semi-historical approach is unchanged, but further historical comments have been introduced at various places in the book to give a better insight into the development of the subject as well as to make the study more interesting and palatable to the students. Key Features • Physical explanations of different types of currents • Concepts of complex permittivity and complex permeability; and anisotropic behaviour of constitute parameters in different media and different conditions • Vector co-ordinate system transformation equations • Halbach magnets and the theory of one-sided flux • Discussion on physical aspects of demagnetization curve of B-H loop for ferromagnetic materials • Extrapolation of Frohlich-Kennely equation used for the design and analysis of permanent magnet applications • Physical aspects of Faraday’s law of electromagnetic induction (i.e., Fourth Maxwell’s field equation) through the approach of special relativity • Extrapolation and elaboration of the concept of electromechanical energy conversion to both magnetic as well as electric field systems Appendices contain in-depth analysis of self-inductance and non-conservative fields (Appendix 6), proof regarding the boundary conditions (Appendix 8), theory of bicylindrical co-ordinate system to provide the physical basis of the circuit approach to the cylindrical transmission line systems (Appendix 10), and properties of useful functions like Bessel and Legendre functions (Appendix 9). The book is designed to serve as a core text for students of electrical engineering. Besides, it will be useful to postgraduate physics students as well as research engineers and design and development engineers in industries.
Everything you think you know about Nikola Tesla is wrong. Nikola Tesla was one of the greatest electrical inventors who ever lived. For years, the engineering genius was relegated to relative obscurity, his contributions to humanity (we are told) obscured by a number of nineteenth-century inventors and industrialists who took credit for his work or stole his patents outright. In recent years, the historical record has been "corrected" and Tesla has been restored to his rightful place among historical luminaries like Thomas Edison, George Westinghouse, and Gugliemo Marconi. Most biographies repeat the familiar account of Tesla's life, including his invention of alternating current, his falling out with Edison, how he lost billions in patent royalties to Westinghouse, and his fight to prove that Marconi stole 13 of his patents to "invent" radio. But, what really happened? Consider this: Everything you think you know about Nikola Tesla is wrong. Newly uncovered information proves that the popular account of Tesla's life is itself very flawed. In The Truth About Tesla, Christopher Cooper sets out to prove that the conventional story not only oversimplifies history, it denies credit to some of the true inventors behind many of the groundbreaking technologies now attributed to Tesla and perpetuates a misunderstanding about the process of innovation itself. Are you positive that Alexander Graham Bell invented the telephone? Are you sure the Wright Brothers were the first in flight? Think again! With a provocative foreward by Tesla biographer Marc. J. Seifer, The Truth About Tesla is one of the first books to set the record straight, tracing the origin of some of the greatest electrical inventions to a coterie of colorful characters that conventional history has all but forgotten.
The pattern set nearly 70 years ago by Maxwell's Treatise on Electricity and Magnetism has had a dominant influence on almost every subsequent English and American text, persisting to the present day. The Treatise was undertaken with the intention of presenting a connected account of the entire known body of electric and magnetic phenomena from the single point of view of Faraday. Thus, it contained little or no mention of the hypotheses put forward on the Continent in earlier years by Riemann, Weber, Kirchhoff, Helmholtz, and others. It is by no means clear that the complete abandonment of these older theories was fortunate for the later development of physics. So far as the purpose of the Treatise was to disseminate the ideas of Faraday, it was undoubtedly fulfilled; as an exposition of the author's own contributions, it proved less successful. By and large, the theories and doctrines peculiar to Maxwell the concept of displacement current, the identity of light and electromagnetic vibrations appeared there in scarcely greater completeness and perhaps in a less attractive form than in the original memoirs. We find that all the first volume and a large part of the second deal with the stationary state. In fact, only a dozen pages are devoted to the general equations of the electromagnetic field, 18 to the propagation of plane waves and the electromagnetic theory of light, and a score more to magneto-optics, all out of a total of 1,000. The mathematical completeness of potential theory and the practical utility of circuit theory have influenced English and American writers in very nearly the same proportion since that day. Only the original and solitary genius of Heaviside succeeded in breaking away from this course. For an exploration of the fundamental content of Maxwell's equations one must turn again to the Continent. There the work of Hertz, Lorentz, Abraham, and Sommerfeld, together with their associates and successors, has led to a vastly deeper understanding of physical phenomena and to industrial developments of tremendous proportions. The present volume attempts a more adequate treatment of variable electromagnetic fields and the theory of wave propagation. Some attention is given to the stationary state, but for the purpose of introducing fundamental concepts under simple conditions, and always with a view to later application in the general case.
©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.