More related to applied mathematics

Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit theorem. There is an account of moment generating functions and their applications. The following three chapters are about branching processes, random walks, and continuous-time random processes such as the Poisson process. The final chapter is a fairly extensive account of Markov chains in discrete time. This second edition develops the success of the first edition through an updated presentation, the extensive new chapter on Markov chains, and a number of new sections to ensure comprehensive coverage of the syllabi at major universities.
Probability and Statistics are studied by most science students, usually as a second- or third-year course. Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real-life and using real data, the authors can show how the fundamentals of probabilistic and statistical theories arise intuitively. It provides a tried and tested, self-contained course, that can also be used for self-study.

A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to the students. In addition the book contains over 350 exercises, half of which have answers, of which half have full solutions. A website at www.springeronline.com/1-85233-896-2 gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite for the book is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to useful modern methods such as the bootstrap.

This will be a key text for undergraduates in Computer Science, Physics, Mathematics, Chemistry, Biology and Business Studies who are studying a mathematical statistics course, and also for more intensive engineering statistics courses for undergraduates in all engineering subjects.

The first Pannonian Symposium on Mathematical Statistics was held at Bad Tatzmannsdorf (Burgenland/Austria) from September 16th to 21st, 1979. The aim of it was to furthe~ and intensify scientific cooperation in the Pannonian area, which, in a broad sense, can be understood to cover Hungary, the eastern part of Austria, Czechoslovakia, and parts of Poland, ¥ugoslavia and Romania. The location of centers of research in mathematical statistics and probability theory in this territory has been a good reason for the geographical limitation of this meeting. About 70 researchers attended this symposium, and 49 lectures were delivered; a considerable part of the presented papers is collected in this volume. Beside the lectures, vigorous informal discussions among the participants took place, so that many problems were raised and possible ways of solutions were attacked. We take the opportunity to thank Dr. U. Dieter (Graz), Dr. F. Konecny (Wien), Dr. W. Krieger (G8ttingen) and Dr. E. Neuwirth (Wien) for their valuable help in the refereeing work for this volume. The Pannonian Symposium could not have taken place without the support of several institutions: The Austrian Ministry for Research and Science, the State government of Burgenland, the Community Bad Tatzmannsdorf, the Kurbad Tatzmannsdorf AG, the Austrian Society for Information Science and Statistics, IBM Austria, Volksbank Oberwart, Erste Osterreichische Spar-Casse and Spielbanken AG Austria. The Austrian Academy of Sciences iv made possible the participation in the Symposium for several mathematicians. We express our gratitude to all these institutions for their generous help.
Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. This book is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an appied regression course to graduate students. This book seves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to statistical methods and a thoeretical linear models course. This book emphasizes the concepts and the analysis of data sets. It provides a review of the key concepts in simple linear regression, matrix operations, and multiple regression. Methods and criteria for selecting regression variables and geometric interpretations are discussed. Polynomial, trigonometric, analysis of variance, nonlinear, time series, logistic, random effects, and mixed effects models are also discussed. Detailed case studies and exercises based on real data sets are used to reinforce the concepts. John O. Rawlings, Professor Emeritus in the Department of Statistics at North Carolina State University, retired after 34 years of teaching, consulting, and research in statistical methods. He was instrumental in developing, and for many years taught, the course on which this text is based. He is a Fellow of the American Statistical Association and the Crop Science Society of America. Sastry G. Pantula is Professor and Directory of Graduate Programs in the Department of Statistics at North Carolina State University. He is a member of the Academy of Outstanding Teachers at North Carolina State University. David A. Dickey is Professor of Statistics at North Carolina State University. He is a member of the Academy of Outstanding Teachers at North Carolina State University.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.