Similar ebooks

'This is about gob-smacking science at the far end of reason ... Take it nice and easy and savour the experience of your mind being blown without recourse to hallucinogens' Nicholas Lezard, Guardian
For most people, quantum theory is a byword for mysterious, impenetrable science. And yet for many years it was equally baffling for scientists themselves.

In this magisterial book, Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its core. Quantum theory looks at the very building blocks of our world, the particles and processes without which it could not exist.

Yet for 60 years most physicists believed that quantum theory denied the very existence of reality itself. In this tour de force of science history, Manjit Kumar shows how the golden age of physics ignited the greatest intellectual debate of the twentieth century.

Quantum theory is weird. In 1905, Albert Einstein suggested that light was a particle, not a wave, defying a century of experiments. Werner Heisenberg's uncertainty principle and Erwin Schrodinger's famous dead-and-alive cat are similarly strange. As Niels Bohr said, if you weren't shocked by quantum theory, you didn't really understand it.

While "Quantum" sets the science in the context of the great upheavals of the modern age, Kumar's centrepiece is the conflict between Einstein and Bohr over the nature of reality and the soul of science. 'Bohr brainwashed a whole generation of physicists into believing that the problem had been solved', lamented the Nobel Prize-winning physicist Murray Gell-Mann. But in "Quantum", Kumar brings Einstein back to the centre of the quantum debate. "Quantum" is the essential read for anyone fascinated by this complex and thrilling story and by the band of brilliant men at its heart.
A new edition of the New York Times bestseller—now a three-part Nova special: a fascinating and thought-provoking journey through the mysteries of space, time, and matter. Now with a new preface (not in any other edition) that will review the enormous public reception of the relatively obscure string theory—made possible by this book and an increased number of adherents amongst physicists—The Elegant Universe "sets a standard that will be hard to beat" (New York Times Book Review). Brian Greene, one of the world's leading string theorists, peels away the layers of mystery surrounding string theory to reveal a universe that consists of eleven dimensions, where the fabric of space tears and repairs itself, and all matter—from the smallest quarks to the most gargantuan supernovas—is generated by the vibrations of microscopically tiny loops of energy.

Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory, as it is often called, is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small-General Relativity and Quantum Theory-is resolved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom. In this brilliantly articulated and refreshingly clear book, Greene relates the scientific story and the human struggle behind twentieth-century physics' search for a theory of everything.

Through the masterful use of metaphor and analogy, The Elegant Universe makes some of the most sophisticated concepts ever contemplated viscerally accessible and thoroughly entertaining, bringing us closer than ever to understanding how the universe works.
INSTANT NEW YORK TIMES BESTSELLER
One of Publishers Weekly’s “Most Anticipated Books of the Fall”

As you read these words, copies of you are being created.
 
Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of 20th century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time.  His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything.

Most physicists haven’t even recognized the uncomfortable truth: physics has been in crisis since 1927. Quantum mechanics  has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is,  how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us.
 
Copies of you are generated thousands of times per second. The Many Worlds Theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established.
 
Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.
Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more

Your plain-English guide to understanding and working with the micro world

Quantum physics — also called quantum mechanics or quantum field theory — can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, from atoms to particles to gases and beyond. Plus, it's packed with fully explained examples to help you tackle the tricky equations like a pro!

Compatible with any classroom course — study at your own pace and prepare for graduate or professional exams Your journey begins here — understand what quantum physics is and what kinds of problems it can solve Know the basic math — from state vectors to quantum matrix manipulations, get the foundation you need to proceed Put quantum physics to work — make sense of Schrödinger's equation and handle particles bound in square wells and harmonic oscillators Solve problems in three dimensions — use the full operators to handle wave functions and eigenvectors to find the natural wave functions of a system Discover the latest research — learn the cutting-edge quantum physics theories that aim to explain the universe itself
Drawing on the findings of leading scientists from around the world, “The Intention Experiment is an extraordinary advance in our understanding of consciousness as a field of all possibilities where intention orchestrates its own fulfillment. If you want to empower yourself and use the laws of intention to manifest your material reality, read this book” (Deepak Chopra).

Using cutting-edge research conducted at Princeton, MIT, Stanford, and many other prestigious universities and laboratories, The Intention Experiment reveals that the universe is connected by a vast quantum energy field.Thought generates its own palpable energy, which you can use to improve your life and, when harnessed together with an interconnected group, to change the world.

In The Intention Experiment, internationally bestselling author Lynne McTaggart takes you on a gripping, mind-blowing journey to the furthest reaches of consciousness.As she narrates the exciting developments in the science of intention, she also profiles the colorful scientists and renowned pioneers who study the effects of focused group intention on scientifically quantifiable targets -- animal, plant, and human.

McTaggart offers a practical program to get in touch with your own thoughts, to increase the activity and strength of your intentions, and to begin achieving real change in your life. You are then invited to participate in an unprecedented experiment: Using The Intention Experiment website to coordinate your involvement and track results, you and other participants around the world will focus your power of intention on specific targets, giving you the opportunity to become a part of scientific history. A new Afterword by the author recounts the successes of the several Intention Experiments so far.

The Intention Experiment forces you to rethink what it is to be human. It proves that we're connected to everyone and everything -- and that discovery demands that we pay better attention to our thoughts, intentions, and actions. Here's how you can.
A rising star in theoretical physics offers his awesome vision of our universe and beyond, all beginning with a simple question: Why does time move forward?

Time moves forward, not backward—everyone knows you can’t unscramble an egg. In the hands of one of today’s hottest young physicists, that simple fact of breakfast becomes a doorway to understanding the Big Bang, the universe, and other universes, too. In From Eternity to Here, Sean Carroll argues that the arrow of time, pointing resolutely from the past to the future, owes its existence to conditions before the Big Bang itself—a period modern cosmology of which Einstein never dreamed. Increasingly, though, physicists are going out into realms that make the theory of relativity seem like child’s play. Carroll’s scenario is not only elegant, it’s laid out in the same easy-to- understand language that has made his group blog, Cosmic Variance, the most popular physics blog on the Net.

From Eternity to Here uses ideas at the cutting edge of theoretical physics to explore how properties of spacetime before the Big Bang can explain the flow of time we experience in our everyday lives. Carroll suggests that we live in a baby universe, part of a large family of universes in which many of our siblings experience an arrow of time running in the opposite direction. It’s an ambitious, fascinating picture of the universe on an ultra-large scale, one that will captivate fans of popular physics blockbusters like Elegant Universe and A Brief History of Time.

Watch a Video

Do you want to take a trip down the rabbit hole?

Get ready, because that’s exactly what you’ll do when you open this book! Never before has a self-help book so dramatically altered the status quo—or reality for that matter. With a genre-busting breakthrough format and layout, the graphics, colors and concepts compel readers to ask themselves Great Questions that will recreate their lives as they know them. With the help of 14 leading quantum physicists, scientist and spiritual thinkers, this book guides readers on a course from the scientific to the spiritual, from the universals to the deeply personal. Along the way, it asks such questions as:

Are we seeing the world as it really is?
What are thoughts made of?
What is the relationship between our thoughts and our world?
Are we biologically addicted to certain emotions?
Can I create my ideal day every day?

The answer to the last question is a resounding yes: you are an infinite set of possibilities, and you can choose every day which reality you want to create for yourself. This book shows you how.
Oversized hardcover! Full-color throughout! Active page design feauturing boxes, pull-outs and exercises! More than 50 movie stills, photos and illustrations! New interviews and theories! More than 30 short chapters!
In this book a unique synergy is achieved between the interactive format, full-color graphics and the ability to take the complicated, dense material of mysticism, philosophy and quantum physics and boil it down to easy to understand, practical advice. What the Bleep Do We Know!? is the self-help phenomena millions have been waiting for.

Key Features
Forget your boring self-help books. This book has a different size, feel and look than anything else on the shelf. Uses the graphics, style, feel and basic structure of the phenomenal movie. Short chapters will be easy to understand and digest. Concise 30-step journey from the theoretic (quantum physics) to the personal (how to“create your day”). Practical exercises show how complex theories interact with daily life.
One of Smithsonian's Favorite Books of 2018
One of Forbes's 2018 Best Books About Astronomy, Physics and Mathematics
One of Kirkus's Best Books of 2018

The intellectual adventure story of the "double-slit" experiment, showing how a sunbeam split into two paths first challenged our understanding of light and then the nature of reality itself--and continues to almost 200 years later.

Many of science's greatest minds have grappled with the simple yet elusive "double-slit" experiment. Thomas Young devised it in the early 1800s to show that light behaves like a wave, and in doing so opposed Isaac Newton. Nearly a century later, Albert Einstein showed that light comes in quanta, or particles, and the experiment became key to a fierce debate between Einstein and Niels Bohr over the nature of reality. Richard Feynman held that the double slit embodies the central mystery of the quantum world. Decade after decade, hypothesis after hypothesis, scientists have returned to this ingenious experiment to help them answer deeper and deeper questions about the fabric of the universe.

How can a single particle behave both like a particle and a wave? Does a particle exist before we look at it, or does the very act of looking create reality? Are there hidden aspects to reality missing from the orthodox view of quantum physics? Is there a place where the quantum world ends and the familiar classical world of our daily lives begins, and if so, can we find it? And if there's no such place, then does the universe split into two each time a particle goes through the double slit?

With his extraordinarily gifted eloquence, Anil Ananthaswamy travels around the world and through history, down to the smallest scales of physical reality we have yet fathomed. Through Two Doors at Once is the most fantastic voyage you can take.
"Dr. Gamow, physicist and gifted writer, has sketched an intriguing portrait of the scientists and clashing ideas that made the quantum revolution." — Christian Science Monitor
In 1900, German physicist Max Planck postulated that light, or radiant energy, can exist only in the form of discrete packages or quanta. This profound insight, along with Einstein's equally momentous theories of relativity, completely revolutionized man's view of matter, energy, and the nature of physics itself.
In this lucid layman's introduction to quantum theory, an eminent physicist and noted popularizer of science traces the development of quantum theory from the turn of the century to about 1930 — from Planck's seminal concept (still developing) to anti-particles, mesons, and Enrico Fermi's nuclear research. Gamow was not just a spectator at the theoretical breakthroughs which fundamentally altered our view of the universe, he was an active participant who made important contributions of his own. This "insider's" vantage point lends special validity to his careful, accessible explanations of Heisenberg's Uncertainty Principle, Niels Bohr's model of the atom, the pilot waves of Louis de Broglie and other path-breaking ideas.
In addition, Gamow recounts a wealth of revealing personal anecdotes which give a warm human dimension to many giants of 20th-century physics. He ends the book with the Blegdamsvej Faust, a delightful play written in 1932 by Niels Bohr's students and colleagues to satirize the epochal developments that were revolutionizing physics. This celebrated play is available only in this volume.
Written in a clear, lively style, and enhanced by 12 photographs (including candid shots of Rutherford, Bohr, Pauli, Heisenberg, Fermi, and others), Thirty Years that Shook Physics offers both scientists and laymen a highly readable introduction to the brilliant conceptions that helped unlock many secrets of energy and matter and laid the groundwork for future discoveries.
Long-listed for the 2016 PEN/E. O. Wilson Literary Science Writing Award

“An important book that provides insight into key new developments in our understanding of the nature of space, time and the universe. It will repay careful study.” —John Gribbin, The Wall Street Journal

“An endlessly surprising foray into the current mother of physics' many knotty mysteries, the solving of which may unveil the weirdness of quantum particles, black holes, and the essential unity of nature.” —Kirkus Reviews (starred review)

What is space? It isn't a question that most of us normally ask. Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality-the ability of two particles to act in harmony no matter how far apart they may be. It appears to be almost magical. Einstein grappled with this oddity and couldn't come to terms with it, describing it as "spooky action at a distance." More recently, the mystery has deepened as other forms of nonlocality have been uncovered. This strange occurrence, which has direct connections to black holes, particle collisions, and even the workings of gravity, holds the potential to undermine our most basic understandings of physical reality. If space isn't what we thought it was, then what is it?
In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of nonlocality and a celebration of the scientists who are trying to explain it. Musser guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the often contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of not only space and time but also the origins of the universe-and they suggest a new grand unified theory of physics. Delightfully readable, Spooky Action at a Distance is a mind-bending voyage to the frontiers of modern physics that will change the way we think about reality.

A daring new vision of quantum theory from one of the leading minds of contemporary physics

Quantum physics is the golden child of modern science. It is the basis of our understanding of atoms, radiation, and so much else, from elementary particles and basic forces to the behavior of materials. But for a century it has also been the problem child of science: it has been plagued by intense disagreements between its inventors, strange paradoxes, and implications that seem like the stuff of fantasy. Whether it's Schrödinger's cat--a creature that is simultaneously dead and alive--or a belief that the world does not exist independently of our observations of it, quantum theory challenges our fundamental assumptions about reality.

In Einstein's Unfinished Revolution, theoretical physicist Lee Smolin provocatively argues that the problems which have bedeviled quantum physics since its inception are unsolved and unsolvable, for the simple reason that the theory is incomplete. There is more to quantum physics, waiting to be discovered. Our task--if we are to have simple answers to our simple questions about the universe we live in--must be to go beyond quantum mechanics to a description of the world on an atomic scale that makes sense.

In this vibrant and accessible book, Smolin takes us on a journey through the basics of quantum physics, introducing the stories of the experiments and figures that have transformed our understanding of the universe, before wrestling with the puzzles and conundrums that the quantum world presents. Along the way, he illuminates the existing theories that might solve these problems, guiding us towards a vision of the quantum that embraces common sense realism.

If we are to have any hope of completing the revolution that Einstein began nearly a century ago, we must go beyond quantum mechanics to find a theory that will give us a complete description of nature. In Einstein's Unfinished Revolution, Lee Smolin brings us a step closer to resolving one of the greatest scientific controversies of our age.
In trying to understand the atom, physicists built quantum mechanics, the most successful theory in science and the basis of one-third of our economy. They found, to their embarrassment, that with their theory, physics encounters consciousness. Authors Bruce Rosenblum and Fred Kuttner explain all this in non-technical terms with help from some fanciful stories and anecdotes about the theory's developers. They present the quantum mystery honestly, emphasizing what is and what is not speculation. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is heatedly controversial. But every interpretation of quantum physics involves consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum mechanics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing. Readers are brought to a boundary where the particular expertise of physicists is no longer the only sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves. In the few decades since the Bell's theorem experiments established the existence of entanglement (Einstein's "spooky action"), interest in the foundations, and the mysteries, of quantum mechanics has accelerated. In recent years, physicists, philosophers, computer engineers, and even biologists have expanded our realization of the significance of quantum phenomena. This second edition includes such advances. The authors have also drawn on many responses from readers and instructors to improve the clarity of the book's explanations.
The Simulation Hypothesis, by best-selling author, renowned MIT computer scientist and Silicon Valley video game designer Rizwan Virk, is the first serious book to explain one of the most daring and consequential theories of our time. Riz is the Executive Director of Play Labs @ MIT, a video game startup incubator at the MIT Game Lab.

Drawing from research and concepts from computer science, artificial intelligence, video games, quantum physics, and referencing both speculative fiction and ancient eastern spiritual texts, Virk shows how all of these traditions come together to point to the idea that we may be inside a simulated reality like the Matrix.

The Simulation Hypothesis is the idea that our physical reality, far from being a solid physical universe, is part of an increasingly sophisticated video game-like simulation, where we all have multiple lives, consisting of pixels with its own internal clock run by some giant Artificial Intelligence. Simulation theory explains some of the biggest mysteries of quantum and relativistic physics, such as quantum indeterminacy, parallel universes, and the integral nature of the speed of light.

Recently, the idea that we may be living in a giant video game has received a lot of attention:

“There’s a one in a billion chance we are not living in a simulation” -Elon Musk

“I find it hard to argue we are not in a simulation.” -Neil deGrasse Tyson

“We are living in computer generated reality.” -Philip K. Dick

Video game technology has developed from basic arcade and text adventures to MMORPGs. Video game designer Riz Virk shows how these games may continue to evolve in the future, including virtual reality, augmented reality, Artificial Intelligence, and quantum computing. This book shows how this evolution could lead us to the point of being able to develop all encompassing virtual worlds like the Oasis in Ready Player One, or the simulated reality in the Matrix. 

While the idea sounds like science fiction, many scientists, engineers, and professors have given the Simulation Hypothesis serious consideration. Futurist Ray Kurzweil has popularized the idea of downloading our consciousness into a silicon based device, which would mean we are just digital information after all. Some, like Oxford lecturer Nick Bostrom, goes further and thinks we may in fact be artificially intelligent consciousness inside such a simulation already! 

But the Simulation Hypothesis is not just a modern idea. Philosophers like Plato have been telling us that we live in a “cave” and can only see shadows of the real world. Mystics of all traditions have long contended that we are living in some kind of “illusion “and that there are other realities which we can access with our minds. While even Judeo-Christian traditions have this idea, Eastern traditions like Buddhism and Hinduism make this idea part of their core tradition — that we are inside a dream world (“Maya” or illusion, or Vishnu’s Dream), and we have “multiple lives” playing different characters when one dies, continuing to gain experience and “level up” after completing certain challenges. Sounds a lot like a video game!

Whether you are a computer scientist, a fan of science fiction like the Matrix movies, a video game enthusiast, or a spiritual seeker, The Simulation Hypothesis touches on all these areas, and you will never look at the world the same way again!

Today we are blessed with two extraordinarily successful theories of physics. The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discovery of gravitational waves at the LIGO observatory in the US (and then Virgo, in Italy) is only the most recent of this theory's many triumphs. The second is quantum mechanics. This theory describes the properties and behaviour of matter and radiation at their smallest scales. It is the basis for the standard model of particle physics, which builds up all the visible constituents of the universe out of collections of quarks, electrons and force-carrying particles such as photons. The discovery of the Higgs boson at CERN in Geneva is only the most recent of this theory's many triumphs. But, while they are both highly successful, these two structures leave a lot of important questions unanswered. They are also based on two different interpretations of space and time, and are therefore fundamentally incompatible. We have two descriptions but, as far as we know, we've only ever had one universe. What we need is a quantum theory of gravity. Approaches to formulating such a theory have primarily followed two paths. One leads to String Theory, which has for long been fashionable, and about which much has been written. But String Theory has become mired in problems. In this book, Jim Baggott describes ": an approach which takes relativity as its starting point, and leads to a structure called Loop Quantum Gravity. Baggott tells the story through the careers and pioneering work of two of the theory's most prominent contributors, Lee Smolin and Carlo Rovelli. Combining clear discussions of both quantum theory and general relativity, this book offers one of the first efforts to explain the new quantum theory of space and time.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.