More related to biology

Less than 450 years ago, all European scholars believed that the earth was the centre of a universe that was at most a few million miles in extent, and that the planets, sun, and stars all rotated around this centre. Less than 250 years ago, they believed that the universe was created essentially in its present state about 6000 years ago. Less than 150 years ago, the special creation by God of living species was still dominant. The relentless application of the scientific method of inference from experiment and observation, without reference to religious, or governmental authority has completely transformed our view of our origins and relation to the universe, in less than 500 years. Few would dispute that this programme has been spectacularly successful, particularly in the twentieth century. This book is about the crucial role of evolutionary biology in transforming our view of human origins and relation to the universe, and the impact of this idea on traditional philosophy and religion. The purpose of this book is to introduce the general reader to some of the most important basic findings, concepts, and procedures of evolutionary biology, as it has developed since the first publications of Darwin and Wallace on the subject, over 140 years ago. Evolution provides a unifying set of principals for the whole of biology; it also illuminates the relation of human beings to the universe and each other. In addition, many aspects of evolution have practical importance; for instance, the rapid evolution of resistance by bacteria to antibiotics and of HIV to antiviral drugs are pressing medical problems. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Evolutionary Processes and Theory contains the proceedings of a workshop held in Israel in March 1985. Contributors explore evolutionary processes and theory and highlight advances in knowledge concerning differentiation, metabolic and immunological mechanisms, and the molecular biology of the genome. Issues that are being debated are also considered, including the origin and evolution of sexual systems, the genetics of altruism, and general forms and levels of social evolution.
This volume is organized into six sections encompassing 33 chapters and begins with an overview of the evolutionary problems of molecular biology. Some chapters are devoted to topics such as the role of gene regulation in evolutionary processes; the structural diversity and evolution of intermediate filament proteins; and adaptation and evolution in the immune system. The next section examines the tempo and mode of molecular evolution, including that of hybrid dysgenesis systems, as well as the statistical aspects of the molecular clock. Later chapters focus on DNA and protein sequences; sexual selection and speciation; and the relation between speciation mechanisms and macroevolutionary patterns. The book also methodically explains population genetics, with particular reference to the altruistic behavior in sibling groups with unrelated intruders, the endosperm evolution in higher plants, and the evolutionary aspects of sexual reproduction in predominantly asexual populations.
This book will be of interest to geneticists and molecular biologists.
The Ontogeny of Information is a critical intervention into the ongoing and perpetually troubling nature-nurture debates surrounding human development. Originally published in 1985, this was a foundational text in what is now the substantial field of developmental systems theory. In this revised edition Susan Oyama argues compellingly that nature and nurture are not alternative influences on human development but, rather, developmental products and the developmental processes that produce them.
Information, says Oyama, is thought to reside in molecules, cells, tissues, and the environment. When something wondrous occurs in the world, we tend to question whether the information guiding the transformation was pre-encoded in the organism or installed through experience or instruction. Oyama looks beyond this either-or question to focus on the history of such developments. She shows that what developmental “information” does depends on what is already in place and what alternatives are available. She terms this process “constructive interactionism,” whereby each combination of genes and environmental influences simultaneously interacts to produce a unique result. Ontogeny, then, is the result of dynamic and complex interactions in multileveled developmental systems.
The Ontogeny of Information challenges specialists in the fields of developmental biology, philosophy of biology, psychology, and sociology, and even nonspecialists, to reexamine the existing nature-nurture dichotomy as it relates to the history and formation of organisms.

Through an integration of systematics, genetics, and related disciplines, the Modern Synthesis of Evolutionary Biology came into being over fifty years ago. Knowledge of evolution has since been transformed by several revolutions: the way we interpret the fossil record has been radically affected by theories of continental drift and asteroid impacts; the way we classify organisms has been influenced by the development of cladistics. Perhaps the most dramatic revolution has been the explosion in molecular biology of information about the genome. Aiming to capture the excitement of modern evolutionary biology, six prominent scientists here explore important issues and problems in their areas of specialization and identify the most promising directions of future research.

The scope of this volume ranges from macroevolutionary patterns in the Precambrian to molecular evolution of the genome. Major themes include the origin and maintenance of variation and the causes of evolutionary change. Chapters on paleontology, ecology, behavior, development, and cell and molecular biology are contributed by Jim Valentine, Graham Bell, Mary Jane West Eberhard, Leo Buss, Marc Kirschner, and Marty Kreitman. The book contains an introductory chapter by John Bonner, whose seminal work is honored here.

Originally published in 1992.

The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

The world’s most revered and eloquent interpreter of evolutionary ideas offers here a work of explanatory force unprecedented in our time—a landmark publication, both for its historical sweep and for its scientific vision. With characteristic attention to detail, Stephen Jay Gould first describes the content and discusses the history and origins of the three core commitments of classical Darwinism: that natural selection works on organisms, not genes or species; that it is almost exclusively the mechanism of adaptive evolutionary change; and that these changes are incremental, not drastic. Next, he examines the three critiques that currently challenge this classic Darwinian edifice: that selection operates on multiple levels, from the gene to the group; that evolution proceeds by a variety of mechanisms, not just natural selection; and that causes operating at broader scales, including catastrophes, have figured prominently in the course of evolution. Then, in a stunning tour de force that will likely stimulate discussion and debate for decades, Gould proposes his own system for integrating these classical commitments and contemporary critiques into a new structure of evolutionary thought. In 2001 the Library of Congress named Stephen Jay Gould one of America’s eighty-three Living Legends—people who embody the “quintessentially American ideal of individual creativity, conviction, dedication, and exuberance.” Each of these qualities finds full expression in this peerless work, the likes of which the scientific world has not seen—and may not see again—for well over a century.
We conceived the idea for this book after teaching a graduate seminar on 'Habitat Complexity' at The University of South Florida. Discussions during the seminar led us to conclude that similar goals were to be found in studies of the topic that spanned the breadth of ecological research. Yet, the exact meaning of 'habitat structure', and the way in which it was measured, seemed to differ widely among subdisciplines. Our own research, which involves several sorts of ecology, convinced us that the differences among subdisciplines were indeed real ones, and that they did inhibit communica tion. We decided that interchange of ideas among researchers working in marine ecology, plant-animal interactions, physiological ecology, and other more-or-less independent fields would be worthwhile, in that it might lead to useful generalizations about 'habitat structure'. To foster this interchange of ideas. we organized a symposium to attract researchers working with a wide variety of organisms living in many habitats, but united in their interest in the topic of 'habitat structure'. The symposium was held at The University of South Florida's Chinsegut Hill Conference Center, in May. 1988. We asked participants to think about 'habitat structure' in new ways; to synthesize important, but fragmented, information; and. perhaps. to consider ways of translating ideas across systems. The chapters contained in this book reflect the participants' attempts to do so. The book is divided into four parts, by major themes that we have found useful categorizations.
In the grand sweep of evolution, the origin of radically new kinds of organisms in the fossil record is the result of a relatively simple process: natural selection marching through the ages. Or is it? Does Darwinian evolution acting over a sufficiently long period of time really offer a complete explanation, or are unusual genetic events and particular environmental and ecological circumstances also involved? With The Origin of Higher Taxa, Tom Kemp sifts through the layers of paleobiological, genetic, and ecological evidence on a quest to answer this essential, game-changing question of biology.

Looking beyond the microevolutionary force of Darwinian natural selection, Kemp enters the realm of macroevolution, or evolution above the species level. From the origin of mammals to the radiation of flowering plants, these large-scale patterns—such as the rise of novel organismal design, adaptive radiations, and lineage extinctions—encompass the most significant trends and transformations in evolution. As macroevolution cannot be studied by direct observation and experiment, scientists have to rely on the outcome of evolution as evidence for the processes at work, in the form of patterns of species appearances and extinctions in a spotty fossil record, and through the nature of species extant today. Marshalling a wealth of new fossil and molecular evidence and increasingly sophisticated techniques for their study, Kemp here offers a timely and original reinterpretation of how higher taxa such as arthropods, mollusks, mammals, birds, and whales evolved—a bold new take on the history of life.
In 2001, scientists were finally able to determine the full human genome sequence, and with the discovery began a genomic voyage back in time. Since then, we have sequenced the full genomes of a number of mankind's primate relatives at a remarkable rate. The genomes of the common chimpanzee (2005) and bonobo (2012), orangutan (2011), gorilla (2012), and macaque monkey (2007) have already been identified, and the determination of other primate genomes is well underway. Researchers are beginning to unravel our full genomic history, comparing it with closely related species to answer age-old questions about how and when we evolved. For the first time, we are finding our own ancestors in our genome and are thereby gleaning new information about our evolutionary past. In Ancestors in Our Genome, molecular anthropologist Eugene E. Harris presents us with a complete and up-to-date account of the evolution of the human genome and our species. Written from the perspective of population genetics, and in simple terms, the book traces human origins back to their source among our earliest human ancestors, and explains many of the most intriguing questions that genome scientists are currently working to answer. For example, what does the high level of discordance among the gene trees of humans and the African great apes tell us about our respective separations from our common ancestor? Was our separation from the apes fast or slow, and when and why did it occur? Where, when, and how did our modern species evolve? How do we search across genomes to find the genomic underpinnings of our large and complex brains and language abilities? How can we find the genomic bases for life at high altitudes, for lactose tolerance, resistance to disease, and for our different skin pigmentations? How and when did we interbreed with Neandertals and the recently discovered ancient Denisovans of Asia? Harris draws upon extensive experience researching primate evolution in order to deliver a lively and thorough history of human evolution. Ancestors in Our Genome is the most complete discussion of our current understanding of the human genome available.
It is my hope that this collection of reviews can be profitably read by all who are interested in evolutionary biology. However, I would like to specifically target it for two disparate groups of biologists seldom men tioned in the same sentence, classical ichthyologists and molecular biologists. Since classical times, and perhaps even before, ichthyologists have stood in awe at the tremendous diversity of fishes. The bulk of effort in the field has always been directed toward understanding this diversity, i. e. , extracting from it a coherent picture of evolutionary processes and lineages. This effort has, in turn, always been overwhelmingly based upon morphological comparisons. The practical advantages of such compari sons, especially the ease with which morphological data can be had from preserved museum specimens, are manifold. But considered objectively (outside its context of "tradition"), morphological analysis alone is a poor tool for probing evolutionary processes or elucidating relationships. The concepts of "relationship" and of "evolution" are inherently genetic ones, and the genetic bases of morphological traits are seldom known in detail and frequently unknown entirely. Earlier in this century, several workers, notably Gordon, Kosswig, Schmidt, and, in his salad years, Carl Hubbs, pioneered the application of genetic techniques and modes of reasoning to ichthyology. While certain that most contemporary ichth yologists are familiar with this body of work, I am almost equally certain that few of them regard it as pertinent to their own efforts.
Marine Invertebrate Evolution in the Galapagos Islands MATTHEW J. JAMES 1. Perspective of This Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Plan of This Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Perspective of This Volume Charles Darwin brought the Galapagos Islands to the attention of zoologists, botanists, and geologists following the six-week visit of H. M. S. Beagle to the islands in 1835. Since then published research on the biota of the islands, partic ularly in multiauthored volumes, has focused on terrestrial plants and animals. The present volume is designed specifically to provide a summary of work on the marine invertebrate fauna. One deviation from that objective was the inclusion of a chapter on land snails, which proved to be a good choice because the phylum Mollusca is now covered more thoroughly in this volume than in any single previous scholarly work on the Galapagos. The academic bottom line with this book is to elucidate the evolutionary responses of shallow water, benthic marine invertebrates to the unique set of insular conditions that exist in the Galapagos Islands. The route taken to that objective has many paths including taxonomic revision, determining biogeo graphic affinities, and examining the ecological requirements of species. The information presented here is for some groups from the islands the first stage in a thorough process that can eventually lead to an understanding of the phylogenetic relationships of these species.
“Simultaneously sobering and exhilarating, Michael Tennesen’s wide-ranging survey of disasters highlights both life’s fragility and its metamorphosing persistence” (Booklist) and describes what life on earth could look like after the next mass extinction.

A growing number of scientists agree we are headed toward a mass extinction, perhaps in as little as 300 years. Already there have been five mass extinctions in the last 600 million years, including the Cretaceous Extinction, during which an asteroid knocked out the dinosaurs. Though these events were initially destructive, they were also prime movers of evolutionary change in nature. And we can see some of the warning signs of another extinction event coming, as our oceans lose both fish and oxygen, and our lands lose both predators and prey. In The Next Species, Michael Tennesen questions what life might be like after it happens.

In thoughtful, provocative ways, Tennesen discusses the future of nature and whether humans will make it through the bottleneck of extinction. Could life suddenly get very big as it did before the arrival of humans? Could the conquest of Mars lead to another form of human? Could we upload our minds into a computer and live in a virtual reality? How would we recognize the next humans? Are they with us now?

Tennesen delves into the history of the planet and travels to rainforests, canyons, craters, and caves all over the world to explore the potential winners and losers of the next era of evolution. His predictions, based on reports and interviews with top scientists, have vital implications for life on earth today. The Next Species is “an engrossing history of life, the dismal changes wrought by man, and a forecast of life after the sixth mass extinction” (Kirkus Reviews).
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.