## Similar Ebooks

This practical, friendly guide focuses on critical conceptstaught in a typical geometry course, from the properties oftriangles, parallelograms, circles, and cylinders, to the skillsand strategies you need to write geometry proofs. GeometryEssentials For Dummies is perfect for cramming or doing homework,or as a reference for parents helping kids study for exams.

Get down to the basics — get a handle on the basics ofgeometry, from lines, segments, and angles, to vertices, altitudes,and diagonals

Conquer proofs with confidence — follow easy-to-graspinstructions for understanding the components of a formal geometryproof

Take triangles in strides — learn how to take in atriangle's sides, analyze its angles, work through an SAS proof,and apply the Pythagorean Theorem

Polish up on polygons — get the lowdown on quadrilateralsand other polygons: their angles, areas, properties, perimeters,and much more

Open the book and find:

Plain-English explanations of geometry terms

Tips for tackling geometry proofs

The seven members of the quadrilateral family

Straight talk on circles

Essential triangle formulas

The lowdown on 3-D: spheres, cylinders, prisms, and pyramids

Ten things to use as reasons in geometry proofs

Learn to:

Core concepts about the geometry of shapes and geometryproofs

Critical theorems, postulates, and definitions

The principles and formulas you need to know

About the Book

Established as a successful practical workbook series with more than 20 titles in the language learning category, Practice Makes Perfect now provides the same clear, concise approach and extensive exercises to key fields within mathematics. The key to the Practice Makes Perfect series is the extensive exercises that provide learners with all the practice they need for mastery.

This major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."

Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.

Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference.

"This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science

Hollywood actress and math whiz Danica McKellar has completely shattered the “math nerd” stereotype. For years, she’s been showing girls how to feel confident and ace their math classes – with style! With Girls Get Curves, she applies her winning techniques to high school geometry, giving readers the tools they need to feel great and totally “get” everything from congruent triangles to theorems, and more. Inside you’ll find:

· Time-saving tips and tricks for homework and tests

· Illuminating practice problems (and proofs!) with detailed solutions

· Totally relatable real-world examples

· True stories from Danica’s own life as an actress and math student

· A Troubleshooting Guide, for getting unstuck during even the trickiest proofs!

With Danica as a coach, girls everywhere can stop hiding from their homework and watch their scores rise!

From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.

Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.

Can geometry be exciting?

It can for those who can appreciate the beauty of numbers and their relationships.

This book contains a meticulous geometric investigation of the 5 Platonic Solids and 5 other important polyhedra, as well as reference charts for each solid.

Poly (many) hedron (face) means "many faces." Polyhedra are 3 dimensional figures with 4 or more faces, or sides. These polyhedra are reflections of Nature herself, and a study of them provides insight into the way the world is structured. Nature is not only beautiful, but highly intelligent. As you explore the polyhedra in this book, this will become apparent over and over again.

The book contains a geometric explanation of the Phi Ratio and Fibonacci series, and a detailed analysis of the pentagon, which forms the basis for many of these solids. The pentagon is composed entirely of Phi relationships, and is integral to a proper understanding of sacred geometry.

With over 140 full-color illustrations, this book is perfect for teachers and students of geometry alike. It is a must for those who are serious about sacred geometry.

This book is dedicated to those who can appreciate the logic of numbers and the beauty of nature, for they are both aspects of the same unifying principle.

Prerequisites: knowledge of simple algebra and elementary trigonometry. No brainiac math skills required! Only the ability to appreciate nature's own logic.

Book #1 in the Geometric Explorations Series

From Loving Healing Press (www.LovingHealing.com)

Revised Second Edition

It's like having your own tutor…

Each year, test-takers report that the Mathematical Reasoning test is the toughest of all the GED® tests. That's why REA offers the most complete guide to success on the GED® Math test.

Written by Sandra Rush, a GED® Math tutor and test expert - This revised second edition of our best-selling test prep is completely aligned with the content and format of the current GED® test. A comprehensive review covers all the mathematics topics tested on the exam, including fractions, decimals, percentages, algebra, polynomials, scientific notation, and more.

Know your way around the TI-30XS MultiView™ calculator - A step-by-step tutorial gets you up and running in no time.

Helpful hints you need to know - Hundreds of hints, shortcuts, and exercises reinforce key math points, including secrets of rounding, calculating with fractions, knowing the difference between domain and range, a neat way to remember negative and absolute values, and much more!

Diagnostic pretest and two full length practice tests - A diagnostic pretest with comprehensive feedback helps you pinpoint your strengths and weaknesses. Two full-length practice tests feature every type of question (including drag-and-drop, hot-spot, and drop-down test items), subject area, and skill tested on the GED® Mathematical Reasoning test. Each practice test comes with detailed answer explanations to help you identify where you need extra review.

If you're concerned about your math score on the GED®, you need REA's GED® Math Test Tutor!

As grandfather and grandson struggle with the question of whether there can ever be absolute certainty in mathematics or life, they are forced to reconsider their fundamental beliefs and choices. Their stories hinge on their explorations of parallel developments in the study of geometry and infinity--and the mathematics throughout is as rigorous and fascinating as the narrative and characters are compelling and complex.

Moving and enlightening, A Certain Ambiguity is a story about what it means to face the extent--and the limits--of human knowledge.

Co-written by Alfred S. Posamentier, a bestselling author of high school and university textbooks and pioneer of educational standards, this volume is geared toward high school geometry classes and contains standard material for numerous state competencies. An electronic solutions manual is available upon request.

This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.

Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

- Basics of Geometry

- Reasoning and Proof

- Perpendicular and Parallel Lines

- Congruent Triangles

- Properties of Triangles

- Quadrilaterals

- Transformations

- Similarity

- Right Triangles and Trigonometry

- Circles

- Area of Polygons and Circles

- Surface Area and Volume

Does the thought of geometry make you jittery? You're not alone. Fortunately, this down-to-earth guide helps you approach it from a new angle, making it easier than ever to conquer your fears and score your highest in geometry. From getting started with geometry basics to making friends with lines and angles, you'll be proving triangles congruent, calculating circumference, using formulas, and serving up pi in no time.

Geometry is a subject full of mathematical richness and beauty. But it's a subject that bewilders many students because it's so unlike the math they've done before—it requires the use of deductive logic in formal proofs. If you're having a hard time wrapping your mind around what that even means, you've come to the right place! Inside, you'll find out how a proof's chain of logic works and even discover some secrets for getting past rough spots along the way. You don't have to be a math genius to grasp geometry, and this book helps you get un-stumped in a hurry!Find out how to decode complex geometry proofsLearn to reason deductively and inductivelyMake sense of angles, arcs, area, and moreImprove your chances of scoring higher in your geometry class

There's no reason to let your nerves get jangled over geometry—your understanding will take new shape with the help of Geometry For Dummies.

This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.

This book will prove useful to undergraduate trigonometric students.

At the end of each section is an ample collection of exercises of varying difficulty that provides problems that both extend and clarify results of that section, as well as problems that apply those results. At the end of chapters 3–7, a summary list of the new definitions and theorems of each chapter is included.

UNLOCK THE SECRETS OF GEOMETRY with THE PRINCETON REVIEW.

Geometry can be a daunting subject. That’s why our new High School Unlocked series focuses on giving you a wide range of key techniques to help you tackle subjects like Geometry. If one method doesn't "click" for you, you can use an alternative approach to understand the concept or problem, instead of painfully trying the same thing over and over without success. Trust us—unlocking geometric secrets doesn't have to hurt!

With this book, you’ll discover the link between abstract concepts and their real-world applications and build confidence as your skills improve. Along the way, you’ll get plenty of practice, from fully guided examples to independent end-of-chapter drills and test-like samples.

Everything You Need to Know About Geometry.

• Complex concepts explained in clear, straightforward ways

• Walk-throughs of sample problems for all topics

• Clear goals and self-assessments to help you pinpoint areas for further review

• Step-by-step examples of different ways to approach problems

Practice Your Way to Excellence.

• Drills and practice questions in every chapter

• Complete answer explanations to boost understanding

• ACT- and SAT-like questions for hands-on experience with how Geometry may appear on major exams

High School Geometry Unlocked covers:

• translation, reflection, and rotation

• congruence and theorems

• the relationship between 2-D and 3-D figures

• trigonometry

• circles, angles, and arcs

• probability

• the algebra-geometry connection

... and more!

A first-rate fictional guide to the concept of multiple dimensions of space, the book will also appeal to those who are interested in computer graphics. This field, which literally makes higher dimensions seeable, has aroused a new interest in visualization. We can now manipulate objects in four dimensions and observe their three-dimensional slices tumbling on the computer screen. But how do we interpret these images? In his introduction, Thomas Banchoff points out that there is no better way to begin exploring the problem of understanding higher-dimensional slicing phenomena than reading this classic novel of the Victorian era.

In addition to providing a historical perspective on plane geometry, this text covers non-Euclidean geometries, allowing students to cultivate an appreciation of axiomatic systems. Additional topics include circles and regular polygons, projective geometry, symmetries, inversions, knots and links, graphs, surfaces, and informal topology. This republication of a popular text is substantially less expensive than prior editions and offers a new Preface by the author.

Professor Meserve (University of Vermont) offers students and prospective teachers the broad mathematical perspective gained from an elementary treatment of the fundamental concepts of mathematics. The clearly presented text is written on an undergraduate (or advanced secondary-school) level and includes numerous exercises and a brief bibliography. An indispensable taddition to any math library, this helpful guide will enable the reader to discover the relationships among Euclidean plane geometry and other geometries; obtain a practical understanding of "proof"; view geometry as a logical system based on postulates and undefined elements; and appreciate the historical evolution of geometric concepts.

Key features:

* Gradual progression in problem difficulty builds and strengthens mathematical skills and techniques

* Basic topics include trigonometric formulas and identities, their applications in the geometry of the triangle, trigonometric equations and inequalities, and substitutions involving trigonometric functions

* Problem-solving tactics and strategies, along with practical test-taking techniques, provide in-depth enrichment and preparation for possible participation in various mathematical competitions

* Comprehensive introduction (first chapter) to trigonometric functions, their relations and functional properties, and their applications in the Euclidean plane and solid geometry expose advanced students to college level material

103 Trigonometry Problems is a cogent problem-solving resource for advanced high school students, undergraduates, and mathematics teachers engaged in competition training.

Other books by the authors include 102 Combinatorial Problems: From the Training of the USA IMO Team (0-8176-4317-6, 2003) and A Path to Combinatorics for Undergraduates: Counting Strategies (0-8176-4288-9, 2004).

From planes, points, and postulates to squares, spheres, and slopes — and everything in between — CliffsQuickReview Geometry can help you make sense of it all. This guide introduces each topic, defines key terms, and walks you through each sample problem step-by-step. Begin with a review of fundamental ideas such as theorems, angles, and intersecting lines. In no time, you'll be ready to work on other concepts such asTriangles and polygons: Classifying and identifying; features and properties; the Triangle Inequality Theorem; the Midpoint Theorem; and morePerimeter and area: Parallelograms, trapezoids, regular polygons, circlesSimilarity: Ratio and proportion; properties of proportions; similar trianglesRight trianglesCircles: Central angles and arcs; inscribed angles; chords, secants, tangents; arc length, sectorsGeometric solids and coordinate geometry

CliffsQuickReview Geometry acts as a supplement to your textbook and to classroom lectures. Use this reference in any way that fits your personal style for study and review — you decide what works best with your needs. Here are just a few ways you can search for topics:Use the free Pocket Guide full of essential informationGet a glimpse of what you’ll gain from a chapter by reading through the Chapter Check-In at the beginning of each chapterUse the Chapter Checkout at the end of each chapter to gauge your grasp of the important information you need to knowTest your knowledge more completely in the CQR Review and look for additional sources of information in the CQR Resource CenterUse the glossary to find key terms fast.

With titles available for all the most popular high school and college courses, CliffsQuickReview guides are a comprehensive resource that can help you get the best possible grades.

The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted.

Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.

> Angles

Type Of Angles

> Triangles

Relations Between Angles

Interior Angles, Exterior Angles

Angle Bisectors

Median

Triangle Theorems

Right Triangle

Similarity

Interior Angle Bisector Theorem, Exterior Angle Bisector Theorem

Ceva’s Theorem, Stewart’s Theorem, Basic Proportionality Theorem, Menelaus’ Theorem, Carnot’s Theorem

> Trigonometry

Unit Circle

Trigonometric Functions

Sum and Product Formulas

Sum and Difference Identities

Reciprocal, Pythagorean and Quotient Identities

Negative Angle Identities

Trigonometric Function Signs

Trigonometric Values for Common Angles

> Circles

> Quadrilaterals

Regular Polygons

Quadrilaterals

> Formulas for Area, Perimeter, Volume

Planar Two Dimensional Shapes

Three-Dimensional Objects

Bringing together geometry and philosophy, this book undertakes a strikingly original study of the origins and significance of the Pythagorean theorem. Thales, whom Aristotle called the first philosopher and who was an older contemporary of Pythagoras, posited the principle of a unity from which all things come, and back into which they return upon dissolution. He held that all appearances are only alterations of this basic unity and there can be no change in the cosmos. Such an account requires some fundamental geometric figure out of which appearances are structured. Robert Hahn argues that Thales came to the conclusion that it was the right triangle: by recombination and repackaging, all alterations can be explained from that figure. This idea is central to what the discovery of the Pythagorean theorem could have meant to Thales and Pythagoras in the sixth century BCE. With more than two hundred illustrations and figures, Hahn provides a series of geometric proofs for this lost narrative, tracing it from Thales to Pythagoras and the Pythagoreans who followed, and then finally to Plato’s Timaeus. Uncovering the philosophical motivation behind the discovery of the theorem, Hahn’s book will enrich the study of ancient philosophy and mathematics alike.

The three-part treatment begins with geometric representations of complex numbers and proceeds to an in-depth survey of elements of analytic geometry. Readers are assured of a variety of perspectives, which include references to algebra, to the classical notions of analytic geometry, to modern plane geometry, and to results furnished by kinematics. The third chapter, on circular transformations, revives in a slightly modified form the essentials of the projective geometry of real binary forms. Numerous exercises appear throughout the text.