Free sample

To mark the World Mathematical Year 2000 an International Conference on Number Theory and Discrete Mathematics in honour of the legendary Indian Mathematician Srinivasa Ramanuj~ was held at the centre for Advanced study in Mathematics, Panjab University, Chandigarh, India during October 2-6, 2000. This volume contains the proceedings of that conference. In all there were 82 participants including 14 overseas participants from Austria, France, Hungary, Italy, Japan, Korea, Singapore and the USA. The conference was inaugurated by Prof. K. N. Pathak, Hon. Vice-Chancellor, Panjab University, Chandigarh on October 2, 2000. Prof. Bruce C. Berndt of the University of Illinois, Urbana Chaimpaign, USA delivered the key note address entitled "The Life, Notebooks and Mathematical Contributions of Srinivasa Ramanujan". He described Ramanujan--as one of this century's most influential Mathematicians. Quoting Mark K. ac, Prof. George E. Andrews of the Pennsylvania State University, USA, in his message for the conference, described Ramanujan as a "magical genius". During the 5-day deliberations invited speakers gave talks on various topics in number theory and discrete mathematics. We mention here a few of them just as a sampling: • M. Waldschmidt, in his article, provides a very nice introduction to the topic of multiple poly logarithms and their special values. • C.
Read more

Additional Information

Read more
Published on
Dec 6, 2012
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Mathematics / Combinatorics
Mathematics / Geometry / Algebraic
Mathematics / Number Theory
Mathematics / Probability & Statistics / Stochastic Processes
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
​​​​In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony.

This volume is the fourth of five volumes that the authors plan to write on Ramanujan’s lost notebook.​ In contrast to the first three books on Ramanujan's Lost Notebook, the fourth book does not focus on q-series. Most of the entries examined in this volume fall under the purviews of number theory and classical analysis. Several incomplete manuscripts of Ramanujan published by Narosa with the lost notebook are discussed. Three of the partial manuscripts are on diophantine approximation, and others are in classical Fourier analysis and prime number theory. Most of the entries in number theory fall under the umbrella of classical analytic number theory. Perhaps the most intriguing entries are connected with the classical, unsolved circle and divisor problems.

Review from the second volume:

"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."

- MathSciNet

Review from the first volume:

"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."

- Gazette of the Australian Mathematical Society​

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.