Neural Network Programming with Java

Packt Publishing Ltd
2
Free sample

Create and unleash the power of neural networks by implementing professional Java codeAbout This Book
  • Learn to build amazing projects using neural networks including forecasting the weather and pattern recognition
  • Explore the Java multi-platform feature to run your personal neural networks everywhere
  • This step-by-step guide will help you solve real-world problems and links neural network theory to their application
Who This Book Is For

This book is for Java developers with basic Java programming knowledge. No previous knowledge of neural networks is required as this book covers the concepts from scratch.

What You Will Learn
  • Get to grips with the basics of neural networks and what they are used for
  • Develop neural networks using hands-on examples
  • Explore and code the most widely-used learning algorithms to make your neural network learn from most types of data
  • Discover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the data
  • Apply the code generated in practical examples, including weather forecasting and pattern recognition
  • Understand how to make the best choice of learning parameters to ensure you have a more effective application
  • Select and split data sets into training, test, and validation, and explore validation strategies
  • Discover how to improve and optimize your neural network
In Detail

Vast quantities of data are produced every second. In this context, neural networks become a powerful technique to extract useful knowledge from large amounts of raw, seemingly unrelated data. One of the most preferred languages for neural network programming is Java as it is easier to write code using it, and most of the most popular neural network packages around already exist for Java. This makes it a versatile programming language for neural networks.

This book gives you a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java.

You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using the concepts you've learned. Furthermore, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time.

All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience.

Style and approach

This book adopts a step-by-step approach to neural network development and provides many hands-on examples using Java programming. Each neural network concept is explored through real-world problems and is delivered in an easy-to-comprehend manner.

Read more

About the author

Alan M.F. Souza is computer engineer from Instituto de Estudos Superiores da Amazonia (IESAM). He holds a post-graduate degree in project management software and a master's degree in industrial processes (applied computing) from Universidade Federal do Para (UFPA). He has been working with neural networks since 2009 and has worked with IT Brazilian companies developing in Java, PHP, SQL, and other programming languages since 2006. He is passionate about programming and computational intelligence. Currently, he is a professor at Universidade da Amazonia (UNAMA) and a PhD candidate at UFPA.

Fabio M. Soares holds a master's degree in applied computing from UFPA and is currently a PhD candidate at the same university. He has been designing neural network solutions since 2004 and has developed applications with this technique in several fields, ranging from telecommunications to chemistry process modeling, and his research topics cover supervised learning for data-driven modeling. He is also self-employed, offering services such as IT infrastructure management as well as database administration to a number of small- and medium-sized companies in northern Brazil. In the past, he has worked for big companies such as Albras, one of the most important aluminium smelters in the world, and Eletronorte, a great power supplier in Brazil. He also has experience as a lecturer, having worked at the Federal Rural University of Amazon and as a Faculty of Castanhal, both in the state of Para, teaching subjects involving programming and artificial intelligence. He has published a number of works, many of them available in English, all including the topics of artificial intelligence applied to some problem. His publications include conference proceedings, such as the TMS (The Minerals Metals and Materials Society), Light Metals and the Intelligent Data Engineering and Automated Learning. He has also has published two book chapters for Intech.

Read more

Reviews

5.0
2 total
Loading...

Additional Information

Publisher
Packt Publishing Ltd
Read more
Published on
Jan 15, 2016
Read more
Pages
244
Read more
ISBN
9781785884948
Read more
Language
English
Read more
Genres
Computers / Neural Networks
Computers / Programming / Algorithms
Computers / Programming Languages / Java
Read more
Content Protection
This content is DRM free.
Read more
Read Aloud
Available on Android devices
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Yusuke Sugomori
Build and run intelligent applications by leveraging key Java machine learning librariesAbout This BookDevelop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries.Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applicationsThis step-by-step guide will help you solve real-world problems and links neural network theory to their applicationWho This Book Is For

This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life.

What You Will LearnGet a practical deep dive into machine learning and deep learning algorithmsExplore neural networks using some of the most popular Deep Learning frameworksDive into Deep Belief Nets and Stacked Denoising Autoencoders algorithmsApply machine learning to fraud, anomaly, and outlier detectionExperiment with deep learning concepts, algorithms, and the toolbox for deep learningSelect and split data sets into training, test, and validation, and explore validation strategiesApply the code generated in practical examples, including weather forecasting and pattern recognitionIn Detail

Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work.

The course provides you with highly practical content explaining deep learning with Java, from the following Packt books:

Java Deep Learning EssentialsMachine Learning in JavaNeural Network Programming with Java, Second EditionStyle and approach

This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application

Sebastian Raschka
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analyticsAbout This BookLeverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn effective strategies and best practices to improve and optimize machine learning systems and algorithmsAsk – and answer – tough questions of your data with robust statistical models, built for a range of datasetsWho This Book Is For

If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.

What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Keras and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn Detail

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success.

Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.

Style and approach

Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Joshua Bloch
The Definitive Guide to Java Platform Best Practices—Updated for Java 7, 8, and 9

Java has changed dramatically since the previous edition of Effective Java was published shortly after the release of Java 6. This Jolt award-winning classic has now been thoroughly updated to take full advantage of the latest language and library features. The support in modern Java for multiple paradigms increases the need for specific best-practices advice, and this book delivers.

As in previous editions, each chapter of Effective Java, Third Edition, consists of several “items,” each presented in the form of a short, stand-alone essay that provides specific advice, insight into Java platform subtleties, and updated code examples. The comprehensive descriptions and explanations for each item illuminate what to do, what not to do, and why.

The third edition covers language and library features added in Java 7, 8, and 9, including the functional programming constructs that were added to its object-oriented roots. Many new items have been added, including a chapter devoted to lambdas and streams.

New coverage includes

Functional interfaces, lambda expressions, method references, and streams Default and static methods in interfaces Type inference, including the diamond operator for generic types The @SafeVarargs annotation The try-with-resources statement New library features such as the Optional interface, java.time, and the convenience factory methods for collections

Register your product at informit.com/register for convenient access to the web edition eBook, updates, and/or corrections as they become available.

Fabio M. Soares
Create and unleash the power of neural networks by implementing professional Java codeAbout This BookLearn to build amazing projects using neural networks including forecasting the weather and pattern recognitionExplore the Java multi-platform feature to run your personal neural networks everywhereThis step-by-step guide will help you solve real-world problems and links neural network theory to their applicationWho This Book Is For

This book is for Java developers who want to know how to develop smarter applications using the power of neural networks. Those who deal with a lot of complex data and want to use it efficiently in their day-to-day apps will find this book quite useful. Some basic experience with statistical computations is expected.

What You Will LearnDevelop an understanding of neural networks and how they can be fittedExplore the learning process of neural networksBuild neural network applications with Java using hands-on examplesDiscover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the dataApply the code generated in practical examples, including weather forecasting and pattern recognitionUnderstand how to make the best choice of learning parameters to ensure you have a more effective applicationSelect and split data sets into training, test, and validation, and explore validation strategiesIn Detail

Want to discover the current state-of-art in the field of neural networks that will let you understand and design new strategies to apply to more complex problems? This book takes you on a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java, giving you everything you need to stand out.

You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using practical examples. Further on, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time.

All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience.

Style and approach

This book takes you on a steady learning curve, teaching you the important concepts while being rich in examples. You'll be able to relate to the examples in the book while implementing neural networks in your day-to-day applications.

Yusuke Sugomori
Build and run intelligent applications by leveraging key Java machine learning librariesAbout This BookDevelop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries.Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applicationsThis step-by-step guide will help you solve real-world problems and links neural network theory to their applicationWho This Book Is For

This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life.

What You Will LearnGet a practical deep dive into machine learning and deep learning algorithmsExplore neural networks using some of the most popular Deep Learning frameworksDive into Deep Belief Nets and Stacked Denoising Autoencoders algorithmsApply machine learning to fraud, anomaly, and outlier detectionExperiment with deep learning concepts, algorithms, and the toolbox for deep learningSelect and split data sets into training, test, and validation, and explore validation strategiesApply the code generated in practical examples, including weather forecasting and pattern recognitionIn Detail

Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work.

The course provides you with highly practical content explaining deep learning with Java, from the following Packt books:

Java Deep Learning EssentialsMachine Learning in JavaNeural Network Programming with Java, Second EditionStyle and approach

This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.