Generalized Inverse Operators: And Fredholm Boundary-Value Problems, Edition 2

Walter de Gruyter GmbH & Co KG
Free sample

The book is devoted to the foundations of the theory of boundary-value problems for various classes of systems of differential-operator equations whose linear part is represented by Fredholm operators of the general form. A common point of view on numerous classes of problems that were traditionally studied independently of each other enables us to study, in a natural way, the theory of these problems, to supplement and improve the existing results, and in certain cases, study some of these problems for the first time.
With the help of the technique of generalized inverse operators, the Vishik– Lyusternik method, and iterative methods, we perform a detailed investigation of the problems of existence, bifurcations, and branching of the solutions of linear and nonlinear boundary-value problems for various classes of differential-operator systems and propose new procedures for their construction.
For more than 11 years that have passed since the appearance of the first edition of the monograph, numerous new publications of the authors in this direction have appeared. In this connection, it became necessary to make some additions and corrections to the previous extensively cited edition, which is still of signifi cant interest for the researchers.
For researchers, teachers, post-graduate students, and students of physical and mathematical departments of universities.

Preliminary Information
Generalized Inverse Operators in Banach Spaces
Pseudoinverse Operators in Hilbert Spaces
Boundary-Value Problems for Operator Equations
Boundary-Value Problems for Systems of Ordinary Differential Equations
Impulsive Boundary-Value Problems for Systems of Ordinary Differential Equations
Solutions of Differential and Difference Systems Bounded on the Entire Real Axis

Read more

About the author

Alexander Andreevych Boichukand Anatoly Samoilenko, National Academy of Sciences of Ukraine, Kiev, Ukraine.

Read more

Additional Information

Walter de Gruyter GmbH & Co KG
Read more
Published on
Aug 22, 2016
Read more
Read more
Read more
Read more
Mathematics / Calculus
Mathematics / Differential Equations / General
Mathematics / Differential Equations / Partial
Mathematics / Functional Analysis
Mathematics / General
Mathematics / Mathematical Analysis
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems.
The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In Chapters 2 and 3, problems concerning the existence of periodic and quasiperiodic solutions for systems with lag are examined. For a nonlinear system with quasiperiodic coefficients and lag, the conditions under which quasiperiodic solutions exist are established. Chapter 4 is devoted to the study of invariant toroidal manifolds for various classes of systems of differential equations with quasiperiodic coefficients. Chapter 5 examines the problem concerning the reducibility of a linear system of difference equations with quasiperiodic coefficients to a linear system of difference equations with constant coefficients.
Chapter 6 contains an investigation of invariant toroidal sets for systems of difference equations with quasiperiodic coefficients.
For mathematicians whose work involves the study of oscillating systems.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.