New Horizons in Occultation Research: Studies in Atmosphere and Climate

Springer Science & Business Media
Free sample

This book presents edited and peer-reviewed papers from the 3rd International Workshop on Occultations for Probing Atmosphere and Climate (OPAC-3), held in Austria. It provides a key reference on the current status in the field and looks toward new horizons.
Read more

About the author

University of Southampton

Read more

Reviews

Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Sep 18, 2009
Read more
Pages
316
Read more
ISBN
9783642003219
Read more
Language
English
Read more
Genres
Science / Astronomy
Science / Earth Sciences / General
Science / Earth Sciences / Geology
Science / Earth Sciences / Meteorology & Climatology
Science / Physics / Astrophysics
Science / Physics / Geophysics
Science / Weights & Measures
Technology & Engineering / Aeronautics & Astronautics
Technology & Engineering / Measurement
Technology & Engineering / Remote Sensing & Geographic Information Systems
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Gottfried Kirchengast
Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi fication of the occultation-related scientific community into a range of different sub-communities, however. The 1st International Workshop on Occultations for Probing Atmosphere and Cli mate-OPAC-1- held September 16-20, 2002, in Graz, Austria, has set in ex actly at this point. OPAC-1 aimed at providing a casual forum and stimulating at mosphere fertilizing scientific discourse, co-operation initiatives, and mutual learning and support amongst members of all the different sub-communities. The workshop was attended by about 80 participants from 17 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere, which was judged by the participants to have fully met the aims expressed.
Ulrich Foelsche
Since the early use of the occultation measurement principle for sounding pla- tary atmospheres and ionospheres, its exploitation in atmospheric remote sensing has seen tremendous advances. In this book we focus on sensors on Low Earth Orbit (LEO) satellites, which exploit solar, lunar, stellar, GNSS (Global Navi- tion Satellite Systems), and LEO-crosslink signals for observing the Earth's - mosphere and climate. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather ca- bility. The atmospheric parameters obtained extend from the fundamental va- ables temperature, density, pressure and water vapor via trace gases, aerosols and cloud liquid water to ionospheric electron density. Occultation data are therefore of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and ionospheric physics. nd The 2 International Workshop on Occultations for Probing Atmosphere and Climate – OPAC-2 – was held September 13–17, 2004, in Graz, Austria. OPAC-2 aimed at providing a casual forum and stimulating atmosphere fertilizing scientific discourse, co-operation initiatives, and mutual learning and support amongst members of all different occultation communities. The workshop was attended by 40 participants from 12 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere, which was judged by the participants to have fully met the aims expressed.
Gottfried Kirchengast
Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi fication of the occultation-related scientific community into a range of different sub-communities, however. The 1st International Workshop on Occultations for Probing Atmosphere and Cli mate-OPAC-1- held September 16-20, 2002, in Graz, Austria, has set in ex actly at this point. OPAC-1 aimed at providing a casual forum and stimulating at mosphere fertilizing scientific discourse, co-operation initiatives, and mutual learning and support amongst members of all the different sub-communities. The workshop was attended by about 80 participants from 17 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere, which was judged by the participants to have fully met the aims expressed.
Ulrich Foelsche
Since the early use of the occultation measurement principle for sounding pla- tary atmospheres and ionospheres, its exploitation in atmospheric remote sensing has seen tremendous advances. In this book we focus on sensors on Low Earth Orbit (LEO) satellites, which exploit solar, lunar, stellar, GNSS (Global Navi- tion Satellite Systems), and LEO-crosslink signals for observing the Earth's - mosphere and climate. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather ca- bility. The atmospheric parameters obtained extend from the fundamental va- ables temperature, density, pressure and water vapor via trace gases, aerosols and cloud liquid water to ionospheric electron density. Occultation data are therefore of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and ionospheric physics. nd The 2 International Workshop on Occultations for Probing Atmosphere and Climate – OPAC-2 – was held September 13–17, 2004, in Graz, Austria. OPAC-2 aimed at providing a casual forum and stimulating atmosphere fertilizing scientific discourse, co-operation initiatives, and mutual learning and support amongst members of all different occultation communities. The workshop was attended by 40 participants from 12 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere, which was judged by the participants to have fully met the aims expressed.
©2017 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.