Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies

Sold by John Wiley & Sons
Free sample

Providing complementary viewpoints from academia as well as technology companies, this book covers the three most important aspects of successful device design: materials, device physics, and manufacturing technologies. It also offers an insight into commercialization concerns, such as packaging technologies, system integration, reel-to-reel large scale manufacturing issues and production costs. With an introduction by Nobel Laureate Alan Heeger.
Read more

About the author

Christoph J. Brabec is director of the polymer photovoltaics programme at Konarka Technologies. After completing his Ph.D. in 1995, he joined the group of Prof Alan Heeger at the University of Santa Barbara, USA, for a sabbatical in 1996, and continued to work on the opto-electronic properties of organic semiconductors as assistant professor at the University of Linz with Prof. Serdar Sariciftci. In 1998, he became senior scientist of the Christian Doppler Laboratory on organic solar cells, which he left in 2001 to join Siemens Corporate Technology as project leader for organic semiconductor devices. He finished his habilitation in physical chemistry at the Johannes Kepler University of Linz in 2003, and is author and co-author of more than 100 papers and has filed over 30 patents.

Vladimir Dyakonov is full professor of experimental physics at the University of Würzburg, Germany, and scientific director of the Bavarian Centre of Applied Energy Research (ZAE Bayern) in Würzburg. He obtained his diploma degree in physics from the University of Saint Petersburg, his Ph.D. from the A. F. Ioffe-Institute in Russia and his habilitation degree from the University of Oldenburg, Germany in 1986, 1996 and 2001, respectively. From 1996 to 1998, he worked as post-doctoral fellow at the universities of Antwerp, Belgium, and Linz, Austria.

Ullrich Scherf is full professor for Macromolecular Chemistry at Bergische Universität Wuppertal, Germany. He studied chemistry at Friedrich Schiller University of Jena, Germany, obtaining his Ph.D. in 1988 and subsequently spent one year at the Institute for Animal Physiology of the Saxonian Academy of Sciences in Leipzig. He joined the Max Planck Institute for Polymer Research in Mainz in 1990 and completed his habilitation in 1996 on polyarylene-type ladder polymers. He followed a call to the University of Potsdam, Germany, onto a professorship for polymer chemistry. He has published over 350 refereed papers and received the Meyer-Struckmann Research Award in 1998.
Read more

Reviews

Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Published on
Sep 22, 2011
Read more
Pages
597
Read more
ISBN
9783527623204
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Technology & Engineering / Electrical
Technology & Engineering / Electronics / Microelectronics
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Darren Ashby
Electrical Engineering 101 covers the basic theory and practice of electronics, starting by answering the question "What is electricity?" It goes on to explain the fundamental principles and components, relating them constantly to real-world examples. Sections on tools and troubleshooting give engineers deeper understanding and the know-how to create and maintain their own electronic design projects. Unlike other books that simply describe electronics and provide step-by-step build instructions, EE101 delves into how and why electricity and electronics work, giving the reader the tools to take their electronics education to the next level. It is written in a down-to-earth style and explains jargon, technical terms and schematics as they arise. The author builds a genuine understanding of the fundamentals and shows how they can be applied to a range of engineering problems.

This third edition includes more real-world examples and a glossary of formulae. It contains new coverage of:

MicrocontrollersFPGAsClasses of componentsMemory (RAM, ROM, etc.)Surface mountHigh speed designBoard layoutAdvanced digital electronics (e.g. processors)Transistor circuits and circuit designOp-amp and logic circuitsUse of test equipmentGives readers a simple explanation of complex concepts, in terms they can understand and relate to everyday life. Updated content throughout and new material on the latest technological advances.Provides readers with an invaluable set of tools and references that they can use in their everyday work.
©2017 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.