Quantitative Analysis for System Applications: Data Science and Analytics Tools and Techniques

Technics Publications
Free sample

As data holdings get bigger and questions get harder, data scientists and analysts must focus on the systems, the tools and techniques, and the disciplined process to get the correct answer, quickly! Whether you work within industry or government, this book will provide you with a foundation to successfully and confidently process large amounts of quantitative data.

Here are just a dozen of the many questions answered within these pages:

What does quantitative analysis of a system really mean? What is a system? What are big data and analytics? How do you know your numbers are good? What will the future data science environment look like? How do you determine data provenance? How do you gather and process information, and then organize, store, and synthesize it? How does an organization implement data analytics? Do you really need to think like a Chief Information Officer? What is the best way to protect data? What makes a good dashboard? What is the relationship between eating ice cream and getting attacked by a shark?

The nine chapters in this book are arranged in three parts that address systems concepts in general, tools and techniques, and future trend topics. Systems concepts include contrasting open and closed systems, performing data mining and big data analysis, and gauging data quality. Tools and techniques include analyzing both continuous and discrete data, applying probability basics, and practicing quantitative analysis such as descriptive and inferential statistics. Future trends include leveraging the Internet of Everything, modeling Artificial Intelligence, and establishing a Data Analytics Support Office (DASO).

Many examples are included that were generated using common software, such as Excel, Minitab, Tableau, SAS, and Crystal Ball. While words are good, examples can sometimes be a better teaching tool. For each example included, data files can be found on the companion website. Many of the data sets are tied to the global economy because they use data from shipping ports, air freight hubs, largest cities, and soccer teams. The appendices contain more detailed analysis including the 10 T’s for Data Mining, Million Row Data Audit (MRDA) Processes, Analysis of Rainfall, and Simulation Models for Evaluating Traffic Flow.

Read more
Collapse

About the author

 

Daniel A. McGrath, Ph.D., is the President of Llano Estacado Management Science Co. He has over 35 years of experience analyzing big data sets with many quantitative and statistical tools and software packages.  He has a diversity of degrees:  BA in Geography and Geosciences, MS in Soil Science, PhD in Systems and Engineering Management with all being from Texas Tech.  He has worked extensively in environmental, project management, continuous improvement, business intelligence, and financial job functions.  In addition, he has been a Project Management Professional and a Six Sigma Master Black Belt.  He lives in Texas and travels widely, helping customers find their lost cities of gold!

Read more
Collapse
Loading...

Additional Information

Publisher
Technics Publications
Read more
Collapse
Published on
Sep 5, 2018
Read more
Collapse
Pages
294
Read more
Collapse
ISBN
9781634624251
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Business & Economics / Information Management
Computers / Computer Simulation
Computers / Databases / Data Mining
Computers / Databases / Data Warehousing
Computers / Intelligence (AI) & Semantics
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy!

Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now.

Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories.

Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing.

You’ll master data science by answering fascinating questions, such as:
• Are religious individuals more or less likely to have extramarital affairs?
• Do attractive professors get better teaching evaluations?
• Does the higher price of cigarettes deter smoking?
• What determines housing prices more: lot size or the number of bedrooms?
• How do teenagers and older people differ in the way they use social media?
• Who is more likely to use online dating services?
• Why do some purchase iPhones and others Blackberry devices?
• Does the presence of children influence a family’s spending on alcohol?

For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how
others have approached similar challenges; selecting your data and methods; generating your statistics;
organizing your report; and telling your story. Throughout, the focus is squarely on what matters most:
transforming data into insights that are clear, accurate, and can be acted upon.

Learn the basics of 3D modeling for the popular Farming Simulator game

Do you want to get started with creating your own vehicles, maps, landscapes, and tools that you can use in the game and share with the Farming Simulator community? Then this is the resource for you! With the help of Jason van Gumster, you'll get up and running on everything you need to master 3D modeling and simulation—and have fun while doing it! Inside, you'll find out how to create and edit maps, start using the material panel, customize your mods by adding texture, use the correct file-naming conventions, test your mod in single and multiplayer modes, get a grip on using Vehicle XML, and so much more.

There's no denying that Farming Simulator players love modding—and now there's a trusted, friendly resource to help you take your modding skills to the next level and get even more out of your game. Written in plain English and packed with tons of step-by-step explanations, Farming Simulator Modding For Dummies is a great way to learn the ropes of 3D modeling with the tools available to you in the game. In no time, you'll be wowing your fellow gamesters—and yourself—with custom, kick-butt mods. So what are you waiting for?

Includes an easy-to-follow introduction to using the GIANTS 3D modeling tools Explains how to export models to Blender, Maya, 3DS Max, or FBX Provides tips for using the correct image format for textures Details how to use Photoshop and Audacity to create custom mods for Farming Simulator

Whether you're one of the legions of rabid fans of the popular Farming Simulator game or just someone who wants to learn the basics of 3D modeling and animation, you'll find everything you need in this handy guide.

The leading introductory book on data mining, fully updated and revised!

When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised— is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company.

Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more Provides best practices for performing data mining using simple tools such as Excel

Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.