Coding Theory and Design Theory

The IMA Volumes in Mathematics and its Applications

Book 20
Springer Science & Business Media
Free sample

This IMA Volume in Mathematics and its Applications Coding Theory and Design Theory Part I: Coding Theory is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizer, Dijen Ray-Chaudhuri, for organizing a workshop which brought together many of the major figures in a variety of research fields in which coding theory and design theory are used. A vner Friedman Willard Miller, Jr. PREFACE Coding Theory and Design Theory are areas of Combinatorics which found rich applications of algebraic structures. Combinatorial designs are generalizations of finite geometries. Probably, the history of Design Theory begins with the 1847 pa per of Reverand T. P. Kirkman "On a problem of Combinatorics", Cambridge and Dublin Math. Journal. The great Statistician R. A. Fisher reinvented the concept of combinatorial 2-design in the twentieth century. Extensive application of alge braic structures for construction of 2-designs (balanced incomplete block designs) can be found in R. C. Bose's 1939 Annals of Eugenics paper, "On the construction of balanced incomplete block designs". Coding Theory and Design Theory are closely interconnected. Hamming codes can be found (in disguise) in R. C. Bose's 1947 Sankhya paper "Mathematical theory of the symmetrical factorial designs".
Read more

Additional Information

Springer Science & Business Media
Read more
Published on
Dec 6, 2012
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Mathematics / Combinatorics
Mathematics / General
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This is the second volume in the series "Mathematics in Industrial Prob lems." The motivation for both volumes is to foster inter action between Industry and Mathematics at the "grass roots"; that is at the level of spe cific problems. These problems come from Industry: they arise from models developed by the industrial scientists in venture directed at the manufac ture of new or improved products. At the same time, these problems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA seminar on Industrial Problems. The book is based on questions raised in the seminar and subsequent discussions. Each chapter is devoted to one of the talks and is self-contained. The chap ters usually provide references to the mathematical literat ure and a list of open problems which are of interest to the industrial scientists. For some problems partial solution is indicated brießy. The last chapter of the book contains a short description of solutions to some of the problems raised in the first volume, as weIl as references to papers in which such solutions have been published. The experience of the last two years demonstrates a growing fruitful interaction between Industry and Mathematics. This interaction benefits Industry by increasing the mathematical knowledge and ideas brought to bear upon its concern, and benefits Mathematics through the infusion of exciting new problems.
This IMA Volume in Mathematics and its Applications TWO PHASE FLOWS AND WAVES is based on the proceedings of a workshop which was an integral part of the 1988-89 IMA program on NONLINEAR WAVES. The workshop focussed on the development of waves in flowing composites. We thank the Coordinating Commit tee: James Glimm, Daniel Joseph, Barbara Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing the stimulating year-long program. We especially thank the Workshop Organizers, Daniel D. Joseph and David G. Schaeffer for their efforts in bringing together many of the major figures in those research fields in which modelling of granular flows and suspensions is used. Avner Friedman Willard Miller, Jr. PREFACE This Workshop, held from January 3-10,1989 at IMA, focused on the properties of materials which consist of many small solid particles or grains. Let us distinguish the terms granular material and suspension. In the former, the material consists exclusively of solid particles interacting through direct contact with one another, either sustained frictional contacts in the case of slow shearing or collisions in the case of rapid shearing. In suspensions, also called two phase flow, the grains interact with one another primarily through the influence of a viscous fluid which occupies the interstitial space and participates in the flow. (As shown by the lecture of I. Vardoulakis (not included in this volume), the distinction between these two idealized cases is not always clear.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.