Essentials of Econophysics Modelling

OUP Oxford
Free sample

This book is a course in methods and models rooted in physics and used in modelling economic and social phenomena. It covers the discipline of econophysics, which creates an interface between physics and economics. Besides the main theme, it touches on the theory of complex networks and simulations of social phenomena in general. After a brief historical introduction, the book starts with a list of basic empirical data and proceeds to thorough investigation of mathematical and computer models. Many of the models are based on hypotheses of the behaviour of simplified agents. These comprise strategic thinking, imitation, herding, and the gem of econophysics, the so-called minority game. At the same time, many other models view the economic processes as interactions of inanimate particles. Here, the methods of physics are especially useful. Examples of systems modelled in such a way include books of stock-market orders, and redistribution of wealth among individuals. Network effects are investigated in the interaction of economic agents. The book also describes how to model phenomena like cooperation and emergence of consensus. The book will be of benefit to graduate students and researchers in both Physics and Economics.
Read more

About the author

1995 PhD in Theoretical Physics Stays: Universita "Tor Vergata", Rome, Italy Employments: Center for Theoretical Study, Prague; Institute of Physics ASCR, Prague (current)
Read more
Loading...

Additional Information

Publisher
OUP Oxford
Read more
Published on
Dec 5, 2013
Read more
Pages
432
Read more
ISBN
9780191009075
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Business & Economics / Economics / General
Business & Economics / Finance / General
Mathematics / Applied
Science / Physics / Condensed Matter
Science / Physics / General
Science / Physics / Mathematical & Computational
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Revised and fully updated, the Second Edition of this textbook offers a comprehensive explanation of the technology and physics of light-emitting diodes (LEDs) such as infrared, visible-spectrum, ultraviolet, and white LEDs made from III–V semiconductors. The elementary properties of LEDs such as electrical and optical characteristics are reviewed, followed by the analysis of advanced device structures. With nine additional chapters, the treatment of LEDs has been vastly expanded, including new material on device packaging, reflectors, UV LEDs, III–V nitride materials, solid-state sources for illumination applications, and junction temperature. Radiative and non-radiative recombination dynamics, methods for improving light extraction, high-efficiency and high-power device designs, white-light emitters with wavelength-converting phosphor materials, optical reflectors, and spontaneous recombination in resonant-cavity structures, are discussed in detail. Fields related to solid-state lighting such as human vision, photometry, colorimetry, and color rendering are covered beyond the introductory level provided in the first edition. The applications of infrared and visible spectrum LEDs in silica fiber, plastic fiber, and free-space communication are also discussed. Semiconductor material data, device design data, and analytic formulae governing LED operation are provided. With exercises, solutions and illustrative examples, this textbook will be of interest to scientists and engineers working on LEDs, and to graduate students in electrical engineering, applied physics, and materials science.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.