Standard Soil Methods for Long-Term Ecological Research

Free sample

Standardized methods and measurements are crucial for ecological research, particularly in long-term ecological studies where the projects are by nature collaborative and where it can be difficult to distinguish signs of environmental change from the effects of differing methodologies. This second volume in the Long-Term Ecological Research (LTER) Network Series addresses these issues directly by providing a comprehensive standardized set of protocols for measuring soil properties. The goal of the volume is to facilitate cross-site synthesis and evaluation of ecosystem processes. Chapters cover methods for studying physical and chemical properties of soils, soil biological properties, and soil organisms, and they include work from many leaders in the field. The book is the first broadly based compendium of standardized soil measurement methods and will be an invaluable resource for ecologists, agronomists, and soil scientists.
Read more

About the author

Robertson is with Michigan State University.

Read more
5.0
1 total
Loading...

Additional Information

Publisher
Oxford University Press
Read more
Published on
Oct 28, 1999
Read more
Pages
480
Read more
ISBN
9780198028260
Read more
Language
English
Read more
Genres
Science / Earth Sciences / General
Science / Life Sciences / Ecology
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Hidden away in foggy, uncharted rain forest valleys in Northern California are the largest and tallest organisms the world has ever sustained–the coast redwood trees, Sequoia sempervirens. Ninety-six percent of the ancient redwood forests have been destroyed by logging, but the untouched fragments that remain are among the great wonders of nature. The biggest redwoods have trunks up to thirty feet wide and can rise more than thirty-five stories above the ground, forming cathedral-like structures in the air. Until recently, redwoods were thought to be virtually impossible to ascend, and the canopy at the tops of these majestic trees was undiscovered. In The Wild Trees, Richard Preston unfolds the spellbinding story of Steve Sillett, Marie Antoine, and the tiny group of daring botanists and amateur naturalists that found a lost world above California, a world that is dangerous, hauntingly beautiful, and unexplored.

The canopy voyagers are young–just college students when they start their quest–and they share a passion for these trees, persevering in spite of sometimes crushing personal obstacles and failings. They take big risks, they ignore common wisdom (such as the notion that there’s nothing left to discover in North America), and they even make love in hammocks stretched between branches three hundred feet in the air.

The deep redwood canopy is a vertical Eden filled with mosses, lichens, spotted salamanders, hanging gardens of ferns, and thickets of huckleberry bushes, all growing out of massive trunk systems that have fused and formed flying buttresses, sometimes carved into blackened chambers, hollowed out by fire, called “fire caves.” Thick layers of soil sitting on limbs harbor animal and plant life that is unknown to science. Humans move through the deep canopy suspended on ropes, far out of sight of the ground, knowing that the price of a small mistake can be a plunge to one’s death.

Preston’s account of this amazing world, by turns terrifying, moving, and fascinating, is an adventure story told in novelistic detail by a master of nonfiction narrative. The author shares his protagonists’ passion for tall trees, and he mastered the techniques of tall-tree climbing to tell the story in The Wild Trees–the story of the fate of the world’s most splendid forests and of the imperiled biosphere itself.


From the Hardcover edition.
Evidence has been mounting for some time that intensive row-crop agriculture as practiced in developed countries may not be environmentally sustainable, with concerns increasingly being raised about climate change, implications for water quantity and quality, and soil degradation. This volume synthesizes two decades of research on the sustainability of temperate, row-crop ecosystems of the Midwestern United States. The overarching hypothesis guiding this work has been that more biologically based management practices could greatly reduce negative impacts while maintaining sufficient productivity to meet demands for food, fiber and fuel, but that roadblocks to their adoption persist because we lack a comprehensive understanding of their benefits and drawbacks. The research behind this book, based at the Kellogg Biological Station (Michigan State University) and conducted under the aegis of the Long-term Ecological Research network, is structured on a foundation of large-scale field experiments that explore alternatives to conventional, chemical-intensive agriculture. Studies have explored the biophysical underpinnings of crop productivity, the interactions of crop ecosystems with the hydrology and biodiversity of the broader landscapes in which they lie, farmers' views about alternative practices, economic valuation of ecosystem services, and global impacts such as greenhouse gas exchanges with the atmosphere. In contrast to most research projects, the long-term design of this research enables identification of slow or delayed processes of change in response to management regimes, and allows examination of responses across a broader range of climatic variability. This volume synthesizes this comprehensive inquiry into the ecology of alternative cropping systems, identifying future steps needed on the path to sustainability.
While soil ecologists continue to be on the forefront of research on biodiversity and ecosystem function, there are few interdisciplinary studies that incorporate ecological knowledge into sustainable land management practices. Conventional, high fossil-fuel input-based agricultural systems can reduce soil biodiversity, alter soil community structure and nutrient cycling, and lead to greater dependence on energy-intensive practices.

Microbial Ecology in Sustainable Agroecosystems brings together soil ecologists, microbial ecologists, and agroecologists working globally to demonstrate how research in soil ecology can contribute to the long-term sustainability of agricultural systems. The book identifies five key areas of research that can be combined to support and direct sustainable land management practices: agriculture, biodiversity, ecosystem services, integrated soil ecology research, and policy.

Topics include:

A broad range of soil microbial processes in terms of the importance of microbial heterogeneity Inputs by soil microorganisms into wheat-farming systems The importance of arbuscular mycorrhizal fungi in making nutrients more available to crops The benefits and environmental problems associated with the use of crops genetically modified with Bacillus thuringiensis The incorporation of soil ecological or microbial ecological theory into agricultural practice to improve agricultural productivity and sustainability Challenges in sustainable agricultural research and the need for coalescing new avenues of research in agriculture and soil ecology

The contributors range from long-time ecological researchers to graduate students and early career scientists, representing a wide spectrum of experience, ages, diversity, and research interests in this area. They cover the diversity and complexity of microbial activity and interactions in soil systems and the many ways in which microorganisms may be manipulated and managed to improve the functions of crop rhizospheres and thereby maximize crop yields and overall productivity. These recommendations can be used to direct and influence agricultural and environmental policy and guide future research in sustainable agricultural systems management.

Evidence has been mounting for some time that intensive row-crop agriculture as practiced in developed countries may not be environmentally sustainable, with concerns increasingly being raised about climate change, implications for water quantity and quality, and soil degradation. This volume synthesizes two decades of research on the sustainability of temperate, row-crop ecosystems of the Midwestern United States. The overarching hypothesis guiding this work has been that more biologically based management practices could greatly reduce negative impacts while maintaining sufficient productivity to meet demands for food, fiber and fuel, but that roadblocks to their adoption persist because we lack a comprehensive understanding of their benefits and drawbacks. The research behind this book, based at the Kellogg Biological Station (Michigan State University) and conducted under the aegis of the Long-term Ecological Research network, is structured on a foundation of large-scale field experiments that explore alternatives to conventional, chemical-intensive agriculture. Studies have explored the biophysical underpinnings of crop productivity, the interactions of crop ecosystems with the hydrology and biodiversity of the broader landscapes in which they lie, farmers' views about alternative practices, economic valuation of ecosystem services, and global impacts such as greenhouse gas exchanges with the atmosphere. In contrast to most research projects, the long-term design of this research enables identification of slow or delayed processes of change in response to management regimes, and allows examination of responses across a broader range of climatic variability. This volume synthesizes this comprehensive inquiry into the ecology of alternative cropping systems, identifying future steps needed on the path to sustainability.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.