Ramanujan's Lost Notebook: Part 2

Springer Science & Business Media
Free sample

This is the second of approximately four volumes that the authors plan to write in their examination of all the claims made by S. Ramanujan in The Lost Notebook and Other Unpublished Papers. This volume, published by Narosa in 1988, contains the “Lost Notebook,” which was discovered by the ?rst author in the spring of 1976 at the library of Trinity College, Cambridge. Also included in this publication are other partial manuscripts, fragments, and letters that Ramanujan wrote to G. H. Hardy from nursing homes during 1917–1919. The authors have attempted to organize this disparate material in chapters. This second volume contains 16 chapters comprising 314 entries, including some duplications and examples, with chapter totals ranging from a high of ?fty-four entries in Chapter 1 to a low of two entries in Chapter 12. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 The Heine Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 2 Heine’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 3 Ramanujan’s Proof of the q-Gauss Summation Theorem . . . . . 10 1. 4 Corollaries of (1. 2. 1) and (1. 2. 5) . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 5 Corollaries of (1. 2. 6) and (1. 2. 7) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 6 Corollaries of (1. 2. 8), (1. 2. 9), and (1. 2. 10) . . . . . . . . . . . . . . . . . . 24 1. 7 Corollaries of Section 1. 2 and Auxiliary Results . . . . . . . . . . . . . 27 2 The Sears–Thomae Transformation . . . . . . . . . . . . . . . . . . . . . . . . 45 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2. 2 Direct Corollaries of (2. 1. 1) and (2. 1. 3) . . . . . . . . . . . . . . . . . . . . 45 2. 3 Extended Corollaries of (2. 1. 1) and (2. 1. 3) . . . . . . . . . . . . . . . . .
Read more

About the author

George E. Andrews is Evan Pugh Professor of Mathematics at the Pennsylvania State University. He has been a Guggenheim Fellow, the Principal Lecturer at a Conference Board for the Mathematical Sciences meeting, and a Hedrick Lecturer for the MAA. Having published extensively on the theory of partitions and related areas, he has been formally recognized for his contribution to pure mathematics by several prestigious universities and is a member of the National Academy of Sciences (USA).

Read more

Reviews

Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Apr 5, 2009
Read more
Pages
420
Read more
ISBN
9780387777665
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Mathematics / Algebra / General
Mathematics / Calculus
Mathematics / Functional Analysis
Mathematics / Geometry / Algebraic
Mathematics / Mathematical Analysis
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Francis J. Flanigan
A caution to mathematics professors: Complex Variables does not follow conventional outlines of course material. One reviewer noting its originality wrote: "A standard text is often preferred [to a superior text like this] because the professor knows the order of topics and the problems, and doesn't really have to pay attention to the text. He can go to class without preparation." Not so here — Dr. Flanigan treats this most important field of contemporary mathematics in a most unusual way. While all the material for an advanced undergraduate or first-year graduate course is covered, discussion of complex algebra is delayed for 100 pages, until harmonic functions have been analyzed from a real variable viewpoint. Students who have forgotten or never dealt with this material will find it useful for the subsequent functions. In addition, analytic functions are defined in a way which simplifies the subsequent theory. Contents include: Calculus in the Plane, Harmonic Functions in the Plane, Complex Numbers and Complex Functions, Integrals of Analytic Functions, Analytic Functions and Power Series, Singular Points and Laurent Series, The Residue Theorem and the Argument Principle, and Analytic Functions as Conformal Mappings.
Those familiar with mathematics texts will note the fine illustrations throughout and large number of problems offered at the chapter ends. An answer section is provided. Students weary of plodding mathematical prose will find Professor Flanigan's style as refreshing and stimulating as his approach.
Steve Awodey
Bruce C. Berndt
Sir Arthur Conan Doyle's famous fictional detective Sherlock Holmes and his sidekick Dr. Watson go camping and pitch their tent under the stars. During the night, Holmes wakes his companion and says, ""Watson, look up at the stars and tell me what you deduce."" Watson says, ""I see millions of stars, and it is quite likely that a few of them are planets just like Earth. Therefore there may also be life on these planets."" Holmes replies, ""Watson, you idiot. Somebody stole our tent."" When seeking proofs of Ramanujan's identities for the Rogers-Ramanujan functions, Watson, i.e., G. N. Watson, was not an ""idiot."" He, L. J. Rogers, and D. M. Bressoud found proofs for several of the identities. A. J. F. Biagioli devised proofs for most (but not all) of the remaining identities. Although some of the proofs of Watson, Rogers, and Bressoud are likely in the spirit of those found by Ramanujan, those of Biagioli are not. In particular, Biagioli used the theory of modular forms. Haunted by the fact that little progress has been made into Ramanujan's insights on these identities in the past 85 years, the present authors sought ""more natural"" proofs. Thus, instead of a missing tent, we have had missing proofs, i.e., Ramanujan's missing proofs of his forty identities for the Rogers-Ramanujan functions. In this paper, for 35 of the 40 identities, the authors offer proofs that are in the spirit of Ramanujan. Some of the proofs presented here are due to Watson, Rogers, and Bressoud, but most are new. Moreover, for several identities, the authors present two or three proofs. For the five identities that they are unable to prove, they provide non-rigorous verifications based on an asymptotic analysis of the associated Rogers-Ramanujan functions. This method, which is related to the 5-dissection of the generating function for cranks found in Ramanujan's lost notebook, is what Ramanujan might have used to discover several of the more difficult identities. Some of the new methods in this paper can be employed to establish new identities for the Rogers-Ramanujan functions.
George E. Andrews
​​​​In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony.

This volume is the fourth of five volumes that the authors plan to write on Ramanujan’s lost notebook.​ In contrast to the first three books on Ramanujan's Lost Notebook, the fourth book does not focus on q-series. Most of the entries examined in this volume fall under the purviews of number theory and classical analysis. Several incomplete manuscripts of Ramanujan published by Narosa with the lost notebook are discussed. Three of the partial manuscripts are on diophantine approximation, and others are in classical Fourier analysis and prime number theory. Most of the entries in number theory fall under the umbrella of classical analytic number theory. Perhaps the most intriguing entries are connected with the classical, unsolved circle and divisor problems.

Review from the second volume:

"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."

- MathSciNet

Review from the first volume:

"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."

- Gazette of the Australian Mathematical Society​

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.