My review
Review from
An in-depth presentation of analytical methods and physical foundations, Analytical Fluid Dynamics, Third Edition breaks down the "how" and "why" of fluid dynamics. While continuing to cover the most fundamental topics in fluid mechanics, this latest work emphasizes advanced analytical approaches to aid in the analytical process and corresponding physical interpretation. It also addresses the need for a more flexible mathematical language (utilizing vector and tensor analysis and transformation theory) to cover the growing complexity of fluid dynamics.
Revised and updated, the text centers on shock-wave structure, shock-wave derivatives, and shock-produced vorticity; supersonic diffusers; thrust and lift from an asymmetric nozzle; and outlines operator methods and laminar boundary-layer theory. In addition, the discussion introduces pertinent assumptions, reasons for studying a particular topic, background discussion, illustrative examples, and numerous end-of-chapter problems.
Utilizing a wide variety of topics on inviscid and viscous fluid dynamics, the author covers material that includes:
Viscous dissipation The second law of thermodynamics Calorically imperfect gas flows Aerodynamic sweep Shock-wave interference Unsteady one-dimensional flow Internal ballistics Force and momentum balance The Substitution Principle Rarefaction shock waves A comprehensive treatment of flow property derivatives just downstream of an unsteady three-dimensional shock Shock-generated vorticity Triple points An extended version of the Navier?Stokes equations Shock-free supersonic diffusers Lift and thrust from an asymmetric nozzle
Analytical Fluid Dynamics, Third Edition
outlines the basics of analytical fluid mechanics while emphasizing analytical approaches to fluid dynamics. Covering the material in-depth, this book provides an authoritative interpretation of formulations and procedures in analytical fluid dynamics, and offers analytical solutions to fluid dynamic problems.The book focuses on shock wave derivatives under various conditions and extensively covers shock-generated vorticity, including a novel analysis of triple points. Special care is given to the presentation of assumptions, implementation requirements, and the illustrative examples included for partial verification of the preceding analysis.
Designed both as a research monograph and for self study, Shock Wave Dynamics is a complete discussion of shock wave dynamics. An analytical exploration of shock wave phenomena, it will be interesting reading for experts in the field of high-speed gas dynamics. Given today's emphasis on numerical simulation, it will also be of interest to computational engineers as a source for code verification and validation.
The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion.
This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.
An in-depth presentation of analytical methods and physical foundations, Analytical Fluid Dynamics, Third Edition breaks down the "how" and "why" of fluid dynamics. While continuing to cover the most fundamental topics in fluid mechanics, this latest work emphasizes advanced analytical approaches to aid in the analytical process and corresponding physical interpretation. It also addresses the need for a more flexible mathematical language (utilizing vector and tensor analysis and transformation theory) to cover the growing complexity of fluid dynamics.
Revised and updated, the text centers on shock-wave structure, shock-wave derivatives, and shock-produced vorticity; supersonic diffusers; thrust and lift from an asymmetric nozzle; and outlines operator methods and laminar boundary-layer theory. In addition, the discussion introduces pertinent assumptions, reasons for studying a particular topic, background discussion, illustrative examples, and numerous end-of-chapter problems.
Utilizing a wide variety of topics on inviscid and viscous fluid dynamics, the author covers material that includes:
Viscous dissipation The second law of thermodynamics Calorically imperfect gas flows Aerodynamic sweep Shock-wave interference Unsteady one-dimensional flow Internal ballistics Force and momentum balance The Substitution Principle Rarefaction shock waves A comprehensive treatment of flow property derivatives just downstream of an unsteady three-dimensional shock Shock-generated vorticity Triple points An extended version of the Navier?Stokes equations Shock-free supersonic diffusers Lift and thrust from an asymmetric nozzle
Analytical Fluid Dynamics, Third Edition
outlines the basics of analytical fluid mechanics while emphasizing analytical approaches to fluid dynamics. Covering the material in-depth, this book provides an authoritative interpretation of formulations and procedures in analytical fluid dynamics, and offers analytical solutions to fluid dynamic problems.The book focuses on shock wave derivatives under various conditions and extensively covers shock-generated vorticity, including a novel analysis of triple points. Special care is given to the presentation of assumptions, implementation requirements, and the illustrative examples included for partial verification of the preceding analysis.
Designed both as a research monograph and for self study, Shock Wave Dynamics is a complete discussion of shock wave dynamics. An analytical exploration of shock wave phenomena, it will be interesting reading for experts in the field of high-speed gas dynamics. Given today's emphasis on numerical simulation, it will also be of interest to computational engineers as a source for code verification and validation.