Graph Theory

· AMS/MAA Textbooks Libro 53 · American Mathematical Soc.
Libro electrónico
205
Páginas

Acerca de este libro electrónico

Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook with those of a problem workbook. The material is presented through a series of approximately 360 strategically placed problems with connecting text. This is supplemented by 280 additional problems that are intended to be used as homework assignments. Concepts of graph theory are introduced, developed, and reinforced by working through leading questions posed in the problems.


This problem-oriented format is intended to promote active involvement by the reader while always providing clear direction. This approach figures prominently on the presentation of proofs, which become more frequent and elaborate as the book progresses. Arguments are arranged in digestible chunks and always appear along with concrete examples to keep the readers firmly grounded in their motivation.


Spanning tree algorithms, Euler paths, Hamilton paths and cycles, planar graphs, independence and covering, connections and obstructions, and vertex and edge colorings make up the core of the book. Hall's Theorem, the Konig-Egervary Theorem, Dilworth's Theorem and the Hungarian algorithm to the optional assignment problem, matrices, and latin squares are also explored.


Descubrir más

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.