Optimization Methods

· Springer Science & Business Media
Ebook
226
Pages

About this ebook

Variational problems which are interesting from physical and technical viewpoints are often supplemented with ordinary differential equations as constraints, e. g. , in the form of Newton's equations of motion. Since analytical solutions for such problems are possible only in exceptional cases and numerical treat ment of extensive systems of differential equations formerly caused computational difficulties, in the classical calculus of variations these problems have generally been considered only with respect to their theoretical aspects. However, the advent of digital computer installations has enabled us, approximately since 1950, to make more practical use of the formulas provided by the calculus of variations, and also to proceed from relationships which are oriented more numerically than analytically. This has proved very fruitful since there are areas, in particular, in automatic control and space flight technology, where occasionally even relatively small optimization gains are of interest. Further on, if in a problem we have a free function of time which we may choose as advantageously as possible, then determination of the absolutely optimal course of this function appears always advisable, even if it gives only small improve ments or if it leads to technical difficulties, since: i) we must in any case choose some course for free functions; a criterion which gives an optimal course for that is very practical ii) also, when choosing a certain technically advantageous course we mostly want to know to which extent the performance of the system can further be increased by variation of the free function.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.