An Analytical Investigation of the Effect of Nozzle Throat Radius of Curvature on Gasdynamic Laser Gain

United States Naval Ordnance Laboratory

Numerical solutions for CO2-N2 gasdynamic laser gain and maximum available power are used to examine the influence of nozzle throat radius of curvature and throat height on laser performance. Conventional gasdynamic laser nozzles incorporate minimum length supersonic contours with sharp throats in order to obtain rapid vibrational freezing of the gas. The study considers the effect of complete rounding of the throat (on both the subsonic and supersonic sides), up to a radius of cruvature equal to three throat heights. Such rounding allows easier manufacture and alignment of the nozzles, and should result in improved flow quality. The present results show a 15-percent reduction in laser gain and maximum available power due to complete rounding of the throat. (Author).
Read more
Collapse
Loading...

Additional Information

Publisher
United States Naval Ordnance Laboratory
Read more
Collapse
Published on
Dec 31, 1972
Read more
Collapse
Pages
10
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.