Mathematics of Aperiodic Order

Free sample

What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically?

Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics.

This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory.

Read more

Reviews

Loading...

Additional Information

Publisher
Birkhäuser
Read more
Published on
Jun 5, 2015
Read more
Pages
428
Read more
ISBN
9783034809030
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Mathematics / Functional Analysis
Mathematics / Geometry / Algebraic
Mathematics / Geometry / Analytic
Mathematics / Geometry / General
Mathematics / Linear & Nonlinear Programming
Mathematics / Mathematical Analysis
Mathematics / Number Theory
Mathematics / Numerical Analysis
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Alan Forrest
This memoir develops, discusses and compares a range of commutative and non-commutative invariants defined for projection method tilings and point patterns. The projection method refers to patterns, particularly the quasiperiodic patterns, constructed by the projection of a strip of a high dimensional integer lattice to a smaller dimensional Euclidean space. In the first half of the memoir the acceptance domain is very general - any compact set which is the closure of its interior - while in the second half we concentrate on the so-called canonical patterns. The topological invariants used are various forms of $K$-theory and cohomology applied to a variety of both $C^*$-algebras and dynamical systems derived from such a pattern.The invariants considered all aim to capture geometric properties of the original patterns, such as quasiperiodicity or self-similarity, but one of the main motivations is also to provide an accessible approach to the the $K_0$ group of the algebra of observables associated to a quasicrystal with atoms arranged on such a pattern. The main results provide complete descriptions of the (unordered) $K$-theory and cohomology of codimension 1 projection patterns, formulae for these invariants for codimension 2 and 3 canonical projection patterns, general methods for higher codimension patterns and a closed formula for the Euler characteristic of arbitrary canonical projection patterns.Computations are made for the Ammann-Kramer tiling. Also included are qualitative descriptions of these invariants for generic canonical projection patterns. Further results include an obstruction to a tiling arising as a substitution and an obstruction to a substitution pattern arising as a projection. One corollary is that, generically, projection patterns cannot be derived via substitution systems.
Edward Frenkel
A New York Times Science Bestseller

What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry.

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.
Mark Ryan
Alan Forrest
This memoir develops, discusses and compares a range of commutative and non-commutative invariants defined for projection method tilings and point patterns. The projection method refers to patterns, particularly the quasiperiodic patterns, constructed by the projection of a strip of a high dimensional integer lattice to a smaller dimensional Euclidean space. In the first half of the memoir the acceptance domain is very general - any compact set which is the closure of its interior - while in the second half we concentrate on the so-called canonical patterns. The topological invariants used are various forms of $K$-theory and cohomology applied to a variety of both $C^*$-algebras and dynamical systems derived from such a pattern.The invariants considered all aim to capture geometric properties of the original patterns, such as quasiperiodicity or self-similarity, but one of the main motivations is also to provide an accessible approach to the the $K_0$ group of the algebra of observables associated to a quasicrystal with atoms arranged on such a pattern. The main results provide complete descriptions of the (unordered) $K$-theory and cohomology of codimension 1 projection patterns, formulae for these invariants for codimension 2 and 3 canonical projection patterns, general methods for higher codimension patterns and a closed formula for the Euler characteristic of arbitrary canonical projection patterns.Computations are made for the Ammann-Kramer tiling. Also included are qualitative descriptions of these invariants for generic canonical projection patterns. Further results include an obstruction to a tiling arising as a substitution and an obstruction to a substitution pattern arising as a projection. One corollary is that, generically, projection patterns cannot be derived via substitution systems.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.