Computational Systems Biology: Chapter 13. Stochastic Simulations of Cellular Processes: From Single Cells to Colonies, Edition 2

Free sample

All chemical reactions are inherently random discrete events; while large numbers of reacting species in well-stirred vessels my appear to be governed by deterministic expressions, the biochemistry at the heart of the living cell—which may involve only a single copy of a gene or only a handfull of proteins—can exhibit significant fluctuations from mean behavior. Here we describe the Lattice Microbes software for the stochastic simulation of biochemical reaction networks within realistic models of cells, and explore its application to two model systems. The first is the lac genetic switch, which illustrates how stochastic gene expression can drive identical cells in macroscopically identical environments toward very different cell fates, and the second is the MinDE system, whose oscillatory behavior along the length of the E. coli cell illustrates the necessity of detailed spatial resolution in accurately modeling cellular biochemistry. We conclude by describing the use of a hybrid methodology that couples the Lattice Microbes’ reaction-diffusion modeling capability with a genome-scale flux-balance model of metabolism in order to describe the collective metabolism of a dense colony of cells.
Read more
Loading...

Additional Information

Publisher
Elsevier Inc. Chapters
Read more
Published on
Nov 26, 2013
Read more
Pages
548
Read more
ISBN
9780128070147
Read more
Language
English
Read more
Genres
Medical / Biostatistics
Science / Life Sciences / Biochemistry
Science / Life Sciences / Biophysics
Science / Life Sciences / Molecular Biology
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
"This is science writing as wonder and as inspiration." —The Wall Street Journal

Wall Street Journal

From one of the most influential scientists of our time, a dazzling exploration of the hidden laws that govern the life cycle of everything from plants and animals to the cities we live in.

Visionary physicist Geoffrey West is a pioneer in the field of complexity science, the science of emergent systems and networks. The term “complexity” can be misleading, however, because what makes West’s discoveries so beautiful is that he has found an underlying simplicity that unites the seemingly complex and diverse phenomena of living systems, including our bodies, our cities and our businesses.

Fascinated by aging and mortality, West applied the rigor of a physicist to the biological question of why we live as long as we do and no longer. The result was astonishing, and changed science: West found that despite the riotous diversity in mammals, they are all, to a large degree, scaled versions of each other. If you know the size of a mammal, you can use scaling laws to learn everything from how much food it eats per day, what its heart-rate is, how long it will take to mature, its lifespan, and so on. Furthermore, the efficiency of the mammal’s circulatory systems scales up precisely based on weight: if you compare a mouse, a human and an elephant on a logarithmic graph, you find with every doubling of average weight, a species gets 25% more efficient—and lives 25% longer. Fundamentally, he has proven, the issue has to do with the fractal geometry of the networks that supply energy and remove waste from the organism’s body.

West’s work has been game-changing for biologists, but then he made the even bolder move of exploring his work’s applicability. Cities, too, are constellations of networks and laws of scalability relate with eerie precision to them. Recently, West has applied his revolutionary work to the business world. This investigation has led to powerful insights into why some companies thrive while others fail. The implications of these discoveries are far-reaching, and are just beginning to be explored. Scale is a thrilling scientific adventure story about the elemental natural laws that bind us together in simple but profound ways. Through the brilliant mind of Geoffrey West, we can envision how cities, companies and biological life alike are dancing to the same simple, powerful tune.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.