Frequency Domain Hybrid Finite Element Methods for Electromagnetics

Synthesis Lectures on Computational Electromagnetics

Book 10
Morgan & Claypool Publishers
Free sample

This book provides a brief overview of the popular Finite Element Method (FEM) and its hybrid versions for electromagnetics with applications to radar scattering, antennas and arrays, guided structures, microwave components, frequency selective surfaces, periodic media, and RF materials characterizations and related topics. It starts by presenting concepts based on Hilbert and Sobolev spaces as well as Curl and Divergence spaces for generating matrices, useful in all engineering simulation methods. It then proceeds to present applications of the finite element and finite element-boundary integral methods for scattering and radiation. Applications to periodic media, metamaterials and bandgap structures are also included. The hybrid volume integral equation method for high contrast dielectrics and is presented for the first time. Another unique feature of the book is the inclusion of design optimization techniques and their integration within commercial numerical analysis packages for shape and material design. To aid the reader with the method's utility, an entire chapter is devoted to two-dimensional problems. The book can be considered as an update on the latest developments since the publication of our earlier book (Finite Element Method for Electromagnetics, IEEE Press, 1998). The latter is certainly complementary companion to this one.
Read more

Additional Information

Morgan & Claypool Publishers
Read more
Published on
Dec 31, 2006
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Science / Physics / Mathematical & Computational
Technology & Engineering / Electrical
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
In his monumental 1687 work, Philosophiae Naturalis Principia Mathematica, known familiarly as the Principia, Isaac Newton laid out in mathematical terms the principles of time, force, and motion that have guided the development of modern physical science. Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.

This authoritative, modern translation by I. Bernard Cohen and Anne Whitman, the first in more than 285 years, is based on the 1726 edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms.

Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.
The translation-only edition of this preeminent work is truly accessible for today's scientists, scholars, and students.
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms
This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the method is applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hypergeometric function, is obtained for the power radiated by a constant-current circular-loop antenna. The second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In the third example, a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media is derived. Additional examples are also briefly discussed.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.