Theory of Games and Economic Behavior: 60th Anniversary Commemorative Edition

Princeton University Press
Free sample

This is the classic work upon which modern-day game theory is based. What began more than sixty years ago as a modest proposal that a mathematician and an economist write a short paper together blossomed, in 1944, when Princeton University Press published Theory of Games and Economic Behavior. In it, John von Neumann and Oskar Morgenstern conceived a groundbreaking mathematical theory of economic and social organization, based on a theory of games of strategy. Not only would this revolutionize economics, but the entirely new field of scientific inquiry it yielded--game theory--has since been widely used to analyze a host of real-world phenomena from arms races to optimal policy choices of presidential candidates, from vaccination policy to major league baseball salary negotiations. And it is today established throughout both the social sciences and a wide range of other sciences.

This sixtieth anniversary edition includes not only the original text but also an introduction by Harold Kuhn, an afterword by Ariel Rubinstein, and reviews and articles on the book that appeared at the time of its original publication in the New York Times, tthe American Economic Review, and a variety of other publications. Together, these writings provide readers a matchless opportunity to more fully appreciate a work whose influence will yet resound for generations to come.

Read more

About the author

John von Neumann (1903-1957) was one of the greatest mathematicians of the twentieth century and a pioneering figure in computer science. A native of Hungary who held professorships in Germany, he was appointed Professor of Mathematics at the Institute for Advanced Study (IAS) in 1933. Later he worked on the Manhattan Project, helped develop the IAS computer, and was a consultant to IBM. An important influence on many fields of mathematics, he is the author of Functional Operators, Mathematical Foundations of Quantum Mechanics, and Continuous Geometry (all Princeton). Oskar Morgenstern (1902-1977) taught at the University of Vienna and directed the Austrian Institute of Business Cycle Research before settling in the United States in 1938. There he joined the faculty of Princeton University, eventually becoming a professor and from 1948 directing its econometric research program. He advised the United States government on a wide variety of subjects. Though most famous for the book he co-authored with von Neumann, Morgenstern was also widely known for his skepticism about economic measurement, as reflected in one of his many other books, On the Accuracy of Economic Observations (Princeton). Harold Kuhn is Professor Emeritus of Mathematical Economics at Princeton University. Ariel Rubinstein is Professor of Economics at Tel Aviv University and at New York University.
Read more
4 total

Additional Information

Princeton University Press
Read more
Published on
Mar 19, 2007
Read more
Read more
Read more
Read more
Business & Economics / Economics / Theory
Mathematics / Game Theory
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
"The best book available for non-mathematicians." — Contemporary Psychology.
This book represents the earliest clear, detailed, precise exposition of the central ideas and results of game theory and related decision-making models — unencumbered by technical mathematical details. It offers a comprehensive, time-tested conceptual introduction, with a social science orientation, to a complex of ideas related to game theory including decision theory, modern utility theory, the theory of statistical decisions, and the theory of social welfare functions.
The first three chapters provide a general introduction to the theory of games including utility theory. Chapter 4 treats two-person, zero-sum games. Chapters 5 and 6 treat two-person, nonzero-sum games and concepts developed in an attempt to meet some of the deficiencies in the von Neumann-Morgenstern theory. Chapters 7–12 treat n-person games beginning with the von Neumann-Morgenstern theory and reaching into many newer developments. The last two chapters, 13 and 14, discuss individual and group decision making. Eight helpful appendixes present proofs of the famous minimax theorem, several geometric interpretations of two-person zero-sum games, solution procedures, infinite games, sequential compounding of games, and linear programming.
Thought-provoking and clearly expressed, Games and Decisions: Introduction and Critical Survey is designed for the non-mathematician and requires no advanced mathematical training. It will be welcomed by economists concerned with economic theory, political scientists and sociologists dealing with conflict of interest, experimental psychologists studying decision making, management scientists, philosophers, statisticians, and a wide range of other decision-makers. It will likewise be indispensable for students in courses in the mathematical theory of games and linear programming.
Recent inroads in higher-dimensional nonlinear quantum field theory and in the global theory of relevant nonlinear wave equations have been accompanied by very interesting cognate developments. These developments include symplectic quantization theory on manifolds and in group representations, the operator algebraic implementation of quantum dynamics, and differential geometric, general relativistic, and purely algebraic aspects.""Quantization and Nonlinear Wave Equations"" thus was highly appropriate as the theme for the first John von Neumann Symposium (June 1994) held at MIT. The symposium was intended to treat topics of emerging signifigance underlying future mathematical developments. This book describes the outstanding recent progress in this important and challenging field and presents general background for the scientific context and specifics regarding key difficulties.Quantization is developed in the context of rigorous nonlinear quantum field theory in four dimensions and in connection with symplectic manifold theory and random Schrodinger operators. Nonlinear wave equations are exposed in relation to recent important progress in general relativity, in purely mathematical terms of microlocal analysis, and as represented by progress on the relativistic Boltzmann equation. Most of the developments in this volume appear in book form for the first time. The resulting work is a concise and informative way to explore the field and the spectrum of methods available for its investigation.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.