Load Balancing: An Automated Learning Approach

·
· World Scientific Publishing Company
eBook
156
Halaman
Memenuhi syarat

Tentang eBook ini

This book presents a system that learns new load indices and tunes the parameters of given migration policies. The key component is a dynamic workload generator that allows off-line measurement of task-completion times under a wide variety of precisely controlled loading conditions. The workload data collected are used for training comparator neural networks, a novel architecture for learning to compare functions of time series and for generating a load index to be used by the load balancing strategy. Finally, the load-index traces generated by the comparator networks are used in a population-based learning system for tuning the parameters of a given load-balancing policy. Together, the system constitutes an automated strategy-learning system for performance-driven improvement of existing load-balancing software.

Tentang pengarang

Pankaj Mehra (Indian Institute of Technology, India);Benjamin W Wah (University of Illinois at Urbana-Champaign)

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.