Nitric Oxide in Plant Growth, Development and Stress Physiology

Springer Science & Business Media
Free sample

Recent advances in the study of nitric oxide (NO) biology, biochemistry, molecular biology and physiology in plants are presented in this book, providing an overview of current understanding of the NO actions involved in adaptive responses of plant fitness to environmental constraints. The special emphasis is on NO-dependent signalling, molecular adjustments and targets as key elements in plant growth, development and stress physiology.

The first part of the book is devoted to the description of key features related to NO biochemistry, synthesis and metabolism and the modes of action involved. The second part covers the functionality of NO in three central nodes of the plant life cycle: growth, development and stress physiology. Finally, a detailed analysis of the advantages and disadvantages of the use of fluorometric detection of NO in plant research brings to light information necessary for understanding the limitations of the method.

Read more

About the author

All authors are the most authoritative and competent scientists in the field of NO as a key player in plant physiological processes. Drs. Delledonne, Durner, Wendehenne and Lamattina have, among others, authored landmark publications in the extraordinary up swelling studies on NO actions in plant biology. Drs. Kaiser and Stohr have an extensive trajectory in the study of N metabolism in plants, and the roles/actions of nitrate reductase/nitrite reductase. Their contributions to understand the origin and functions of NO at both the tissues and the subcellular levels have been remarkable. Drs. Jones, Puntarulo and Konjevic have made extraordinary contributions to decipher the role of endogenous NO, its sources and physiological concentrations in seed germination and dormancy breaking. Drs. Scherer, Blatt and Lamattina have made extensive contributions to our understanding of the cross talk between classical plant hormone actions and NO involvement in their signaling mechanisms. Drs. Delledonne, Corpas, Shapiro, Salgado and Hill, and their colleagues have presented pioneering reports on the involvement of NO in plant responses to diverse (a)biotic stress situations, particularly during the hypersensitive response (HR). Finally, the authoritative contribution of Dr. Yamasaki to integrate aspects of NO generation, metabolism and detection in plants has been an important impetus and has lead to new theories on the role of NO in N, C and S metabolism in plants and in the interaction with the environment.

Read more

Reviews

Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Jan 30, 2007
Read more
Pages
283
Read more
ISBN
9783540451310
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Science / Life Sciences / Biochemistry
Science / Life Sciences / Biophysics
Science / Life Sciences / Botany
Science / Life Sciences / Cell Biology
Science / Life Sciences / Molecular Biology
Technology & Engineering / Agriculture / General
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Johnjoe McFadden
Geoffrey West
"This is science writing as wonder and as inspiration." —The Wall Street Journal

Wall Street Journal

From one of the most influential scientists of our time, a dazzling exploration of the hidden laws that govern the life cycle of everything from plants and animals to the cities we live in.

Visionary physicist Geoffrey West is a pioneer in the field of complexity science, the science of emergent systems and networks. The term “complexity” can be misleading, however, because what makes West’s discoveries so beautiful is that he has found an underlying simplicity that unites the seemingly complex and diverse phenomena of living systems, including our bodies, our cities and our businesses.

Fascinated by aging and mortality, West applied the rigor of a physicist to the biological question of why we live as long as we do and no longer. The result was astonishing, and changed science: West found that despite the riotous diversity in mammals, they are all, to a large degree, scaled versions of each other. If you know the size of a mammal, you can use scaling laws to learn everything from how much food it eats per day, what its heart-rate is, how long it will take to mature, its lifespan, and so on. Furthermore, the efficiency of the mammal’s circulatory systems scales up precisely based on weight: if you compare a mouse, a human and an elephant on a logarithmic graph, you find with every doubling of average weight, a species gets 25% more efficient—and lives 25% longer. Fundamentally, he has proven, the issue has to do with the fractal geometry of the networks that supply energy and remove waste from the organism’s body.

West’s work has been game-changing for biologists, but then he made the even bolder move of exploring his work’s applicability. Cities, too, are constellations of networks and laws of scalability relate with eerie precision to them. Recently, West has applied his revolutionary work to the business world. This investigation has led to powerful insights into why some companies thrive while others fail. The implications of these discoveries are far-reaching, and are just beginning to be explored. Scale is a thrilling scientific adventure story about the elemental natural laws that bind us together in simple but profound ways. Through the brilliant mind of Geoffrey West, we can envision how cities, companies and biological life alike are dancing to the same simple, powerful tune.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.