Algorithmic Trends in Computational Fluid Dynamics

Springer Science & Business Media
Free sample

This volume contains the proceedings of the ICASE/LaRC Work shop on the "Algorithmic Trends for Computational Fluid Dynamics (CFD) in the 90's" conducted by the Institute for Computer Applica tions in Science and Engineering (ICASE) and the Fluid Mechanics Division of NASA Langley Research Center during September 15-17, 1991. The purpose of the workshop was to bring together numerical analysts and computational fluid dynamicists i) to assess the state of the art in the areas of numerical analysis particularly relevant to CFD, ii) to identify promising new developments in various areas of numerical analysis that will have impact on CFD, and iii) to establish a long-term perspective focusing on opportunities and needs. This volume consists of five chapters - i) Overviews, ii) Accelera tion Techniques, iii) Spectral and Higher-Order Methods, iv) Multi Resolution/ Subcell Resolution Schemes (including adaptive meth ods), and v) Inherently Multidimensional Schemes. Each chapter covers a session of the Workshop. The chapter on overviews contains the articles by J.L. Steger, H.-O. Kreiss, R.W. MacCormack, O.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
423
Read more
Collapse
ISBN
9781461227083
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Probability & Statistics / Stochastic Processes
Science / Mechanics / Fluids
Science / Mechanics / Solids
Technology & Engineering / Mechanical
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book is designed to provide lecture notes (theory) and experimental design of major concepts typically taught in most Mechanics of Materials courses in a sophomore- or junior-level Mechanical or Civil Engineering curriculum. Several essential concepts that engineers encounter in practice, such as statistical data treatment, uncertainty analysis, and Monte Carlo simulations, are incorporated into the experiments where applicable, and will become integral to each laboratory assignment. Use of common strain (stress) measurement techniques, such as strain gages, are emphasized. Application of basic electrical circuits, such as Wheatstone bridge for strain measurement, and use of load cells, accelerometers, etc., are employed in experiments. Stress analysis under commonly applied loads such as axial loading (compression and tension), shear loading, flexural loading (cantilever and four-point bending), impact loading, adhesive strength, creep, etc., are covered. LabVIEW software with relevant data acquisition (DAQ) system is used for all experiments. Two final projects each spanning 2‒3 weeks are included: (i) flexural loading with stress intensity factor determination and (ii) dynamic stress wave propagation in a slender rod and determination of the stress‒strain curves at high strain rates.

The book provides theoretical concepts that are pertinent to each laboratory experiment and prelab assignment that a student should complete to prepare for the laboratory. Instructions for securing off-the-shelf components to design each experiment and their assembly (with figures) are provided. Calibration procedure is emphasized whenever students assemble components or design experiments. Detailed instructions for conducting experiments and table format for data gathering are provided. Each lab assignment has a set of questions to be answered upon completion of experiment and data analysis. Lecture notes provide detailed instructions on how to use LabVIEW software for data gathering during the experiment and conduct data analysis.



This comprehensive book is an earnest endeavour to apprise the readers with a thorough understanding of all important basic concepts and methods of fluid mechanics and hydraulic machines. The text is organised into sixteen chapters, out of which the first twelve chapters are more inclined towards imparting the conceptual aspects of fluids mechanics, while the remaining four chapters accentuate more on the details of hydraulic machines. The book is supplemented with solutions manual for instructors containing detailed solutions of all chapter-end unsolved problems. Primarily intended as a text for the undergraduate students of civil, mechanical, chemical and aeronautical engineering, this book will be of immense use to the postgraduate students of hydraulics engineering, water resources engineering, and fluids engineering.

Key features

• The book describes all concepts in easy-to-grasp language with diagrammatic representation and practical examples.
• A variety of worked-out examples are included within the text, illustrating the wide applications of fluid mechanics.
• Every chapter comprises summary that presents the main idea and relevant details of the topics discussed.
• Almost all chapters incorporate objective type questions of previous years’ GATE examinations, along with their answers and in-depth explanations.
• Previous years’ IES conventional questions are provided at the end of most of the chapters.
• A set of theoretical questions and numerous unsolved numerical problems are provided at the chapter-end to help the students from practice pointof-view.
• Every chapter consists of a section Suggested Reading comprising a list of publications that the students may refer for more detailed information.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.