Principles of Electrodynamics

Dover Books on Physics

Courier Corporation
1
Free sample

Unlike most textbooks on electromagnetic theory, which treat electricity, magnetism, Coulomb's law and Faraday's law as almost independent subjects within the framework of the theory, this well-written text takes a relativistic point of view in which electric and magnetic fields are really different aspects of the same physical quantity.
Suitable for advanced undergraduates and graduate students, this volume offers a superb exposition of the essential unity of electromagnetism in its natural , relativistic framework while demonstrating the powerful constraint of relativistic invariance. It will be seen that all electromagnetism follows from electrostatics and from the requirement for the simplest laws allowable under the relativistic constraint. By means of these insights, the author hopes to encourage students to think about theories as yet undeveloped and to see this model as useful in other areas of physics.
After an introductory chapter establishing the mathematical background of the subject and a survey of some new mathematical ideas, the author reviews the principles of electrostatics. He then introduces Einstein's special theory of relativity and applies it throughout the rest of the book. Topics treated range from Gauss's theorem, Coulomb's law, the Faraday effect and Fresnel's equations to multiple expansion of the radiation field , interference and diffraction, waveguides and cavities and electric and magnetic susceptibility.
Carefully selected problems at the end of each chapter invite readers to test their grasp of the material. Professor Schwartz received his Ph.D. from Columbia University and has taught physics there and at Stanford University. He is perhaps best known for his experimental research in the field of high-energy physics and was a co-discoverer of the muon-type neutrino in 1962. He shared the 1988 Nobel Prize in Physics with Leon M. Lederman and Jack Steinberger.
Read more
Collapse

About the author

Schwartz is with Rush Medical College.

Read more
Collapse
5.0
1 total
Loading...

Additional Information

Publisher
Courier Corporation
Read more
Collapse
Published on
Apr 24, 2012
Read more
Collapse
Pages
368
Read more
Collapse
ISBN
9780486134673
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Physics / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Analytical mechanics is, of course, a topic of perennial interest and usefulness in physics and engineering, a discipline that boasts not only many practical applications, but much inherent mathematical beauty. Unlike many standard textbooks on advanced mechanics, however, this present text eschews a primarily technical and formalistic treatment in favor of a fundamental, historical, philosophical approach. As the author remarks, there is a tremendous treasure of philosophical meaning" behind the great theories of Euler and Lagrange, Hamilton, Jacobi, and other mathematical thinkers.
Well-written, authoritative, and scholarly, this classic treatise begins with an introduction to the variational principles of mechanics including the procedures of Euler, Lagrange, and Hamilton.
Ideal for a two-semester graduate course, the book includes a variety of problems, carefully chosen to familiarize the student with new concepts and to illuminate the general principles involved. Moreover, it offers excellent grounding for the student of mathematics, engineering, or physics who does not intend to specialize in mechanics, but wants a thorough grasp of the underlying principles.
The late Professor Lanczos (Dublin Institute of Advanced Studies) was a well-known physicist and educator who brought a superb pedagogical sense and profound grasp of the principles of mechanics to this work, now available for the first time in an inexpensive Dover paperback edition. His book will be welcomed by students, physicists, engineers, mathematicians, and anyone interested in a clear masterly exposition of this all-important discipline.
"Singlemindedly devoted to its job of educating potential many-particle theorists…deserves to become the standard text in the field." — Physics Today
"The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy." — Endeavor
A self-contained, unified treatment of nonrelativistic many-particle systems, this text offers a solid introduction to procedures in a manner that enables students to adopt techniques for their own use. Its discussions of formalism and applications move easily between general theory and direct use by offering illustrations of principles to specific cases.
Chapters on second quantization and statistical mechanics introduce students to ground-state (zero-temperature) formalism, which is explored by way of Green’s functions and field theory (fermions), Fermi systems, linear response and collective modes, and Bose systems. Finite-temperature formalism is examined through field theory at finite temperature, physical systems at finite temperature, and real-time Green’s functions and linear response. Additional topics cover canonical transformations and applications to physical systems in terms of nuclear matter, phonons and electrons, superconductivity, and superfluid helium as well as applications to finite systems.
Graduate students will find this text enormously practical in making the transition from taking courses in quantum mechanics to interpreting the vast quantity of literature concerning the many-body problem.
This superb text by David Bohm, formerly Princeton University and Emeritus Professor of Theoretical Physics at Birkbeck College, University of London, provides a formulation of the quantum theory in terms of qualitative and imaginative concepts that have evolved outside and beyond classical theory. Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail.
Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.
Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.
Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.
"A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level." — Philosophical Magazine
Although written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances.
The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics and includes discussions of energy levels, states and eigenfunctions, degeneracy and other topics. Part II examines systems composed of independent molecules or of other independent subsystems. Topics range from ideal monatomic gas and monatomic crystals to polyatomic gas and configuration of polymer molecules and rubber elasticity. An examination of systems of interacting molecules comprises the nine chapters in Part Ill, reviewing such subjects as lattice statistics, imperfect gases and dilute liquid solutions. Part IV covers quantum statistics and includes sections on Fermi-Dirac and Bose-Einstein statistics, photon gas and free-volume theories of quantum liquids.
Each chapter includes problems varying in difficulty — ranging from simple numerical exercises to small-scale "research" propositions. In addition, supplementary reading lists for each chapter invite students to pursue the subject at a more advanced level. Readers are assumed to have studied thermodynamics, calculus, elementary differential equations and elementary quantum mechanics.
Because of the flexibility of the chapter arrangements, this book especially lends itself to use in a one-or two-semester graduate course in chemistry, a one-semester senior or graduate course in physics or an introductory course in statistical mechanics.
Analytical mechanics is, of course, a topic of perennial interest and usefulness in physics and engineering, a discipline that boasts not only many practical applications, but much inherent mathematical beauty. Unlike many standard textbooks on advanced mechanics, however, this present text eschews a primarily technical and formalistic treatment in favor of a fundamental, historical, philosophical approach. As the author remarks, there is a tremendous treasure of philosophical meaning" behind the great theories of Euler and Lagrange, Hamilton, Jacobi, and other mathematical thinkers.
Well-written, authoritative, and scholarly, this classic treatise begins with an introduction to the variational principles of mechanics including the procedures of Euler, Lagrange, and Hamilton.
Ideal for a two-semester graduate course, the book includes a variety of problems, carefully chosen to familiarize the student with new concepts and to illuminate the general principles involved. Moreover, it offers excellent grounding for the student of mathematics, engineering, or physics who does not intend to specialize in mechanics, but wants a thorough grasp of the underlying principles.
The late Professor Lanczos (Dublin Institute of Advanced Studies) was a well-known physicist and educator who brought a superb pedagogical sense and profound grasp of the principles of mechanics to this work, now available for the first time in an inexpensive Dover paperback edition. His book will be welcomed by students, physicists, engineers, mathematicians, and anyone interested in a clear masterly exposition of this all-important discipline.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.