Transportation Planning: State of the Art

Springer Science & Business Media
Free sample

This book collects selected presentations of the Meeting of the EURO Working Group on Transportation, which took place at the Department of Ma- ematics at Chalmers University of Technology, Göteborg (or, Gothenburg), Sweden, September 9–11, 1998. [The EURO Working Group on Transpor- tion was founded at the end of the 7th EURO Summer Institute on Urban Traffic Management, which took place in Cetraro, Italy, June 21–July, 1991. There were around 30 founding members of the Working Group, a number which now has grown to around 150. Meetings since then include Paris (1993), Barcelona (1994), and Newcastle (1996). ] About 100 participants were present, enjoying healthy rain and a memorable conference dinner in the Feskekôrka. The total number of presentations at the conference was about 60, coming from quite diverse areas within the field of operations research in transportation, and covering all modes of transport: Deterministic traffic equilibrium models (6 papers) Stochastic traffic equilibrium models (5 papers) Combined traffic models (3 papers) Dynamic traffic models (7 papers) Simulation models (4 papers) Origin–destination matrix estimation (2 papers) Urban public transport models (8 papers) Aircraft scheduling (1 paper) Ship routing (2 papers) Railway planning and scheduling (6 papers) Vehicle routing (3 papers) Traffic management (3 papers) Signal control models (3 papers) Transportation systems analysis (5 papers) ix x TRANSPORTATION PLANNING Among these papers, 14 were eventually selected to be included in this volume.
Read more
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Apr 18, 2006
Read more
Pages
252
Read more
ISBN
9780306482205
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Business & Economics / Economics / General
Business & Economics / Operations Research
Business & Economics / Urban & Regional
Mathematics / Applied
Mathematics / Optimization
Political Science / Public Policy / Economic Policy
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
A cooperative system is defined to be multiple dynamic entities that share information or tasks to accomplish a common, though perhaps not singular, objective. Examples of cooperative control systems might include: robots operating within a manufacturing cell, unmanned aircraft in search and rescue operations or military surveillance and attack missions, arrays of micro satellites that form a distributed large aperture radar, employees operating within an organization, and software agents. The term entity is most often associated with vehicles capable of physical motion such as robots, automobiles, ships, and aircraft, but the definition extends to any entity concept that exhibits a time dependent behavior. Critical to cooperation is communication, which may be accomplished through active message passing or by passive observation. It is assumed that cooperation is being used to accomplish some common purpose that is greater than the purpose of each individual, but we recognize that the individual may have other objectives as well, perhaps due to being a member of other caucuses. This implies that cooperation may assume hierarchical forms as well. The decision-making processes (control) are typically thought to be distributed or decentralized to some degree. For if not, a cooperative system could always be modeled as a single entity. The level of cooperation may be indicated by the amount of information exchanged between entities. Cooperative systems may involve task sharing and can consist of heterogeneous entities. Mixed initiative systems are particularly interesting heterogeneous systems since they are composed of humans and machines. Finally, one is often interested in how cooperative systems perform under noisy or adversary conditions.
In December 2000, the Air Force Research Laboratory and the University of Florida successfully hosted the first Workshop on Cooperative Control and Optimization in Gainesville, Florida. This book contains selected refereed papers summarizing the participants' research in control and optimization of cooperative systems.
Audience: Faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.