Molecular Thermodynamics and Transport Phenomena

McGraw Hill Professional
Free sample

Many newly developing fields of science and engineering, including nanotechnology, protein engineering, microfluidics, etc., require an in-depth molecular understanding and description of matter. Molecular Thermodynamics and Transport Phenomena: Complexities of Scales in Space and Time provides a rigorous molecular and statistical mechanical basis for the classical fundamental molecular description of matter. The author uniquely explores the disparities in spatial and temporal time scales in molecular mechanical dynamics and interactions that lead to the different observed behavior of matter, including equilibrium vs. nonequilibrium behavior, phase states, and irreversibility. This book provides a modern, comprehensive foundation for the classical molecular theory of matter that is demanded of today’s advancing fields of science and technology.
Read more

About the author

Michael H. Peters, PhD currently conducts teaching and research in the general field of biomedical engineering. He is the author of over 30 journal articles, one textbook, and has given numerous invited talks at conferences and universities throughout the U.S. His research focuses on the computational molecular biophysics of cell signal molecules (ligands) and their interactions with special cellular targets, such as integrins, and in-vitro and in-vivo experimentation and clinical applications of ligand-receptor systems.
Read more

Reviews

Loading...

Additional Information

Publisher
McGraw Hill Professional
Read more
Published on
Mar 7, 2005
Read more
Pages
177
Read more
ISBN
9780071588904
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Science / Mechanics / General
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
RABI MAJUMDAR
This book provides a comprehensive treatment of the principles and applications of quantum mechanics with equal emphasis on concept building and problem solving. The book follows an integrated approach to expose the students to applications of quantum mechanics in both physics and chemistry streams. A chapter is devoted to biological applications as well, to evince the interest of the students pursuing courses in Biotechnology and Bioinformatics. Such unique organization of the book makes it suitable for both Quantum Mechanics and Quantum Chemistry courses, where the common areas like molecular structure and spectroscopy are emphasized. The book, in its second edition, continues to serve as an ideal textbook for the first-year postgraduate students of both physics and chemistry as well as for senior undergraduate students pursuing honours courses in these disciplines. It has been thoroughly revised and enlarged with the introduction of a new chapter on “Quantum Statistics and Planck's Law of Black-Body Radiation”, some important sections in various chapters and more worked-out examples. The book helps students learn difficult concepts of quantum mechanics with simpler mathematics and intuitive language, but without sacrificing rigour. It has informal classroom type approach suitable for self-learning. Key Features • Gives about 200 worked-out examples and chapter-end problems with hints and answers related to different areas of modern science including biology. • Highlights important technological developments based on Quantum Mechanics, such as electron microscope, scanning tunnelling microscope, lasers, Raman spectroscopy and Nuclear Magnetic Resonance (NMR). • Provides adequate number of illustrations. • Includes detailed mathematical derivations separately in Appendices for a more rigorous approach.
©2017 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.