Life Ascending: The Ten Great Inventions of Evolution

Profile Books
7
Free sample

Winner of the 2010 Royal Society Prize for science booksPowerful new research methods are providing fresh and vivid insights into the makeup of life. Comparing gene sequences, examining the atomic structure of proteins and looking into the geochemistry of rocks have all helped to explain creation and evolution in more detail than ever before. Nick Lane uses the full extent of this new knowledge to describe the ten greatest inventions of life, based on their historical impact, role in living organisms today and relevance to current controversies. DNA, sex, sight and consciousnesses are just four examples.Lane also explains how these findings have come about, and the extent to which they can be relied upon. The result is a gripping and lucid account of the ingenuity of nature, and a book which is essential reading for anyone who has ever questioned the science behind the glories of everyday life.
Read more

About the author

Nick Lane has published four critically acclaimed books, translated into 20 languages; most recently The Vital Question. He was awarded the 2015 Biochemical Society Award for his outstanding contribution to the molecular life sciences. Life Ascending won the 2010 Royal Society Prize for Science Books.Nick is a biochemist in the Department of Genetics, Evolution and Environment at University College London.'Like his forebears in that same department - Steve Jones, JBS Haldane - he's that rare species, a scientist who can illuminate the bewildering complexities of biology with clear, luminous words' (Observer)'One of the most exciting science writers of our time' (Independent)
Read more
3.7
7 total
Loading...

Additional Information

Publisher
Profile Books
Read more
Published on
Dec 31, 2010
Read more
Pages
344
Read more
ISBN
9781861978189
Read more
Language
English
Read more
Genres
Science / Life Sciences / Evolution
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
“One of the deepest, most illuminating books about the history of life to have been published in recent years.” —The Economist

The Earth teems with life: in its oceans, forests, skies and cities. Yet there’s a black hole at the heart of biology. We do not know why complex life is the way it is, or, for that matter, how life first began. In The Vital Question, award-winning author and biochemist Nick Lane radically reframes evolutionary history, putting forward a solution to conundrums that have puzzled generations of scientists.

For two and a half billion years, from the very origins of life, single-celled organisms such as bacteria evolved without changing their basic form. Then, on just one occasion in four billion years, they made the jump to complexity. All complex life, from mushrooms to man, shares puzzling features, such as sex, which are unknown in bacteria. How and why did this radical transformation happen?

The answer, Lane argues, lies in energy: all life on Earth lives off a voltage with the strength of a lightning bolt. Building on the pillars of evolutionary theory, Lane’s hypothesis draws on cutting-edge research into the link between energy and cell biology, in order to deliver a compelling account of evolution from the very origins of life to the emergence of multicellular organisms, while offering deep insights into our own lives and deaths.

Both rigorous and enchanting, The Vital Question provides a solution to life’s vital question: why are we as we are, and indeed, why are we here at all?

New York Times Bestseller

A Summer Reading Pick for President Barack Obama, Bill Gates, and Mark Zuckerberg

From a renowned historian comes a groundbreaking narrative of humanity’s creation and evolution—a #1 international bestseller—that explores the ways in which biology and history have defined us and enhanced our understanding of what it means to be “human.”

One hundred thousand years ago, at least six different species of humans inhabited Earth. Yet today there is only one—homo sapiens. What happened to the others? And what may happen to us?

Most books about the history of humanity pursue either a historical or a biological approach, but Dr. Yuval Noah Harari breaks the mold with this highly original book that begins about 70,000 years ago with the appearance of modern cognition. From examining the role evolving humans have played in the global ecosystem to charting the rise of empires, Sapiens integrates history and science to reconsider accepted narratives, connect past developments with contemporary concerns, and examine specific events within the context of larger ideas.

Dr. Harari also compels us to look ahead, because over the last few decades humans have begun to bend laws of natural selection that have governed life for the past four billion years. We are acquiring the ability to design not only the world around us, but also ourselves. Where is this leading us, and what do we want to become?

Featuring 27 photographs, 6 maps, and 25 illustrations/diagrams, this provocative and insightful work is sure to spark debate and is essential reading for aficionados of Jared Diamond, James Gleick, Matt Ridley, Robert Wright, and Sharon Moalem.

Mitochondria are tiny structures located inside our cells that carry out the essential task of producing energy for the cell. They are found in all complex living things, and in that sense, they are fundamental for driving complex life on the planet. But there is much more to them than that. Mitochondria have their own DNA, with their own small collection of genes, separate from those in the cell nucleus. It is thought that they were once bacteria living independent lives. Their enslavement within the larger cell was a turning point in the evolution of life, enabling the development of complex organisms and, closely related, the origin of two sexes. Unlike the DNA in the nucleus, mitochondrial DNA is passed down exclusively (or almost exclusively) via the female line. That's why it has been used by some researchers to trace human ancestry daughter-to-mother, to 'Mitochondrial Eve'. Mitochondria give us important information about our evolutionary history. And that's not all. Mitochondrial genes mutate much faster than those in the nucleus because of the free radicals produced in their energy-generating role. This high mutation rate lies behind our ageing and certain congenital diseases. The latest research suggests that mitochondria play a key role in degenerative diseases such as cancer, through their involvement in precipitating cell suicide. Mitochondria, then, are pivotal in power, sex, and suicide. In this fascinating and thought-provoking book, Nick Lane brings together the latest research findings in this exciting field to show how our growing understanding of mitochondria is shedding light on how complex life evolved, why sex arose (why don't we just bud?), and why we age and die. This understanding is of fundamental importance, both in understanding how we and all other complex life came to be, but also in order to be able to control our own illnesses, and delay our degeneration and death. 'An extraordinary account of groundbreaking modern science... The book abounds with interesting and important ideas.' Mark Ridley, Department of Zoology, University of Oxford
Mitochondria are tiny structures located inside our cells that carry out the essential task of producing energy for the cell. They are found in all complex living things, and in that sense, they are fundamental for driving complex life on the planet. But there is much more to them than that. Mitochondria have their own DNA, with their own small collection of genes, separate from those in the cell nucleus. It is thought that they were once bacteria living independent lives. Their enslavement within the larger cell was a turning point in the evolution of life, enabling the development of complex organisms and, closely related, the origin of two sexes. Unlike the DNA in the nucleus, mitochondrial DNA is passed down exclusively (or almost exclusively) via the female line. That's why it has been used by some researchers to trace human ancestry daughter-to-mother, to 'Mitochondrial Eve'. Mitochondria give us important information about our evolutionary history. And that's not all. Mitochondrial genes mutate much faster than those in the nucleus because of the free radicals produced in their energy-generating role. This high mutation rate lies behind our ageing and certain congenital diseases. The latest research suggests that mitochondria play a key role in degenerative diseases such as cancer, through their involvement in precipitating cell suicide. Mitochondria, then, are pivotal in power, sex, and suicide. In this fascinating and thought-provoking book, Nick Lane brings together the latest research findings in this exciting field to show how our growing understanding of mitochondria is shedding light on how complex life evolved, why sex arose (why don't we just bud?), and why we age and die. This understanding is of fundamental importance, both in understanding how we and all other complex life came to be, but also in order to be able to control our own illnesses, and delay our degeneration and death. 'An extraordinary account of groundbreaking modern science... The book abounds with interesting and important ideas.' Mark Ridley, Department of Zoology, University of Oxford
◆2016比爾蓋茲夏日選書

◆2015經濟學人年度選書

◆2010英國皇家學會科學圖書大獎、2015年英國生化學會獎得主最新作品

◆程延年博士古生物學專業審定

◆顏聖紘博士演化生物學專業審定

◆清大生科黃貞祥助理教授專文推薦

◆吳大猷銀籤獎名譯家梅苃芢最新譯作


繼《生命的躍升》、《能量、性、死亡》後,

生化學大師尼克.連恩(英國倫敦大學學院榮譽教授)又一力作

窮盡一生對生命如何發展而成的大哉問


在地球上出現的生命形式,到底是一個偶然,還是宇宙定律下的必然?


「假若,連恩教授所建構的思維體系是正確的話,

它將有如哥白尼革命一般的重要,甚或更為驚世!」

——程延年


什麼是生命?

什麼是「活著」?

複雜生命又是如何演化而來?


從幾萬英呎的高空到深不見底的深海海溝,我們的地球到處都充斥著生命。然而,生物學的核心卻是一個亙古難解的問題:複雜生命哪裡來?或者,換句話說,生命最初又是如何開始的。大師級生化學家尼克連恩則在本書中針對此問題提出解答。


第一個原始生命誕生之後,長達二十五億年的時光,這些單細胞生物基本上並無多大改變,仍維持原核型態。然而,在這生命演化的四十億年時光裡,僅僅一次,生命出現了跳躍性的成長,發展出前所未見的複雜性。在這之後所有的複雜多細胞生物,從香菇到人類,不僅出現令人費解、不同於原始細菌的生物特徵,如有性生殖、細胞凋零等,更甚,若是在顯微鏡下檢視這兩者的細胞,除了香菇有細胞壁之外,其他真核細胞的特徵皆一應俱全,無法輕易分辨兩者。為什麼只有真核細胞可以有這麼多樣的演化?以及,為什麼這樣激烈的演化是如何、又為何發生的呢?


尼克連恩認為答案在於「能量」:地球上所有生命的代謝與存活皆需要耗費相當高能的能量。連恩以進化論為基礎,結合了前沿研究當中能量轉換與細胞生物學的關係,從中討論生命的起源到多細胞生物的出現,並提供一個嚴謹的論證,同時加深我們對於「活著」與「死亡」在生物意義上的見解。


既嚴謹又豐富,本書對生命起源的問題提供了一個解答,這個解答也可以幫助我們思索,在地球上出現的生命形式,到底是一個偶然,還是宇宙定律下的必然?


【專業推薦】 (按姓氏筆畫序)


王弘毅╱臺灣大學臨床醫學研究所教授

李家維╱《科學人》雜誌總編輯

林大利╱特有生物研究保育中心助理研究員

林仲平╱國立台灣師範大學生命科學系教授

林勇欣╱國立交通大學生物資訊所副教授

邵廣昭╱國立台灣海洋大學講座教授、中研院生物多樣性研究中心兼任研究員

孫維新╱國立自然科學博物館館長

徐堉峰╱國立臺灣師範大學生命科學系教授

高文媛╱國立台灣大學生態學與演化生物學研究所教授兼所長

陳濟民╱國立臺灣博物館 館長

彭鏡毅╱中央研究院生物多樣性研究中心前研究員兼博物館主任


【各界好評】?


「尼克連恩藉由縝密的科學推論提供了生命的一覽圖。他的寫作清晰,如同簡潔有力的散文,然而其中卻滿盈著科學的深度,讀者將會被其生物學的驚人觀點給深深滿足。」

——《紐約時報》


「如果我是一個有錢的男人,我會買下所有的刷次,然後贈送給要念生物學的每一位大學新生。」

——Franklin Harold 《Microbe》雜誌總編輯


「他是一個原創的研究者與思想家,也是一名充滿熱情和理想的教育者。他的理論如此高明,範圍驚人,且深具挑戰性……若此理論正確,尼克連恩將如同哥白尼同等重要。」

——英國《衛報》


「一個生命形成的新理論。」

——英國《金融時報》


「比起其他的書,此書有著最令人信服的生命起源的過程推論……連恩從一個細胞獲得能量的角度出發,到為什麼有『有性生殖』和『老去』,以深入了解生命這個問題的各種層面。」

——《The Economist Intelligent Life》


「改變生物學觀點的書……應該要有更多人知道這個觀點。」

——比爾蓋茲


「近年來,對於生命的演化史最深且最有啟發性的作品。」

——《經濟學人》



出版社 貓頭鷹出版 (城邦)

“One of the deepest, most illuminating books about the history of life to have been published in recent years.” —The Economist

The Earth teems with life: in its oceans, forests, skies and cities. Yet there’s a black hole at the heart of biology. We do not know why complex life is the way it is, or, for that matter, how life first began. In The Vital Question, award-winning author and biochemist Nick Lane radically reframes evolutionary history, putting forward a solution to conundrums that have puzzled generations of scientists.

For two and a half billion years, from the very origins of life, single-celled organisms such as bacteria evolved without changing their basic form. Then, on just one occasion in four billion years, they made the jump to complexity. All complex life, from mushrooms to man, shares puzzling features, such as sex, which are unknown in bacteria. How and why did this radical transformation happen?

The answer, Lane argues, lies in energy: all life on Earth lives off a voltage with the strength of a lightning bolt. Building on the pillars of evolutionary theory, Lane’s hypothesis draws on cutting-edge research into the link between energy and cell biology, in order to deliver a compelling account of evolution from the very origins of life to the emergence of multicellular organisms, while offering deep insights into our own lives and deaths.

Both rigorous and enchanting, The Vital Question provides a solution to life’s vital question: why are we as we are, and indeed, why are we here at all?

Oxygen has had extraordinary effects on life. Three hundred million years ago, in Carboniferous times, dragonflies grew as big as seagulls, with wingspans of nearly a metre. Researchers claim they could have flown only if the air had contained more oxygen than today - probably as much as 35 per cent. Giant spiders, tree-ferns, marine rock formations and fossil charcoals all tell the same story. High oxygen levels may also explain the global firestorm that contributed to the demise of the dinosaurs after the asteroid impact. The strange and profound effects that oxygen has had on the evolution of life pose a riddle, which this book sets out to answer. Oxygen is a toxic gas. Divers breathing pure oxygen at depth suffer from convulsions and lung injury. Fruit flies raised at twice normal atmospheric levels of oxygen live half as long as their siblings. Reactive forms of oxygen, known as free radicals, are thought to cause ageing in people. Yet if atmospheric oxygen reached 35 per cent in the Carboniferous, why did it promote exuberant growth, instead of rapid ageing and death? Oxygen takes the reader on an enthralling journey, as gripping as a thriller, as it unravels the unexpected ways in which oxygen spurred the evolution of life and death. The book explains far more than the size of ancient insects: it shows how oxygen underpins the origin of biological complexity, the birth of photosynthesis, the sudden evolution of animals, the need for two sexes, the accelerated ageing of cloned animals like Dolly the sheep, and the surprisingly long lives of bats and birds. Drawing on this grand evolutionary canvas, Oxygen offers fresh perspectives on our own lives and deaths, explaining modern killer diseases, why we age, and what we can do about it. Advancing revelatory new ideas, following chains of evidence, the book ranges through many disciplines, from environmental sciences to molecular medicine. The result is a captivating vision of contemporary science and a humane synthesis of our place in nature. This remarkable book will redefine the way we think about the world.
Mitochondria are tiny structures located inside our cells that carry out the essential task of producing energy for the cell. They are found in all complex living things, and in that sense, they are fundamental for driving complex life on the planet. But there is much more to them than that. Mitochondria have their own DNA, with their own small collection of genes, separate from those in the cell nucleus. It is thought that they were once bacteria living independent lives. Their enslavement within the larger cell was a turning point in the evolution of life, enabling the development of complex organisms and, closely related, the origin of two sexes. Unlike the DNA in the nucleus, mitochondrial DNA is passed down exclusively (or almost exclusively) via the female line. That's why it has been used by some researchers to trace human ancestry daughter-to-mother, to 'Mitochondrial Eve'. Mitochondria give us important information about our evolutionary history. And that's not all. Mitochondrial genes mutate much faster than those in the nucleus because of the free radicals produced in their energy-generating role. This high mutation rate lies behind our ageing and certain congenital diseases. The latest research suggests that mitochondria play a key role in degenerative diseases such as cancer, through their involvement in precipitating cell suicide. Mitochondria, then, are pivotal in power, sex, and suicide. In this fascinating and thought-provoking book, Nick Lane brings together the latest research findings in this exciting field to show how our growing understanding of mitochondria is shedding light on how complex life evolved, why sex arose (why don't we just bud?), and why we age and die. This understanding is of fundamental importance, both in understanding how we and all other complex life came to be, but also in order to be able to control our own illnesses, and delay our degeneration and death. 'An extraordinary account of groundbreaking modern science... The book abounds with interesting and important ideas.' Mark Ridley, Department of Zoology, University of Oxford
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.