Division Simplified and Abbreviated: Also Contractions in Multiplication and an Easy Method for Addition ...

Weed, Parsons, printers

Reviews

Loading...

Additional Information

Publisher
Weed, Parsons, printers
Read more
Published on
Dec 31, 1887
Read more
Pages
132
Read more
Read more
Best For
Read more
Language
English
Read more
Content Protection
This content is DRM free.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Prabhanjan Tattar
Over 85 recipes to help you complete real-world data science projects in R and PythonAbout This BookTackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your dataGet beyond the theory and implement real-world projects in data science using R and PythonEasy-to-follow recipes will help you understand and implement the numerical computing conceptsWho This Book Is For

If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python.

What You Will LearnLearn and understand the installation procedure and environment required for R and Python on various platformsPrepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and PythonBuild a predictive model and an exploratory modelAnalyze the results of your model and create reports on the acquired dataBuild various tree-based methods and Build random forestIn Detail

As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use.

Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python.

Style and approach

This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization

©2017 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.