Physik für Ingenieure: Ausgabe 10

Springer-Verlag
Free sample

Als wir 1970 die erste Auflage dieses Physikbuches vorlegten, geschah es in der Überzeu gung, dass die Physik als Grundlagenfach für den Ingenieur in der Ausbildung und in der Praxis ständig an Bedeutung gewinnt. Das gilt sicher heute mehr denn je. Besonders die immer wichtiger werdende sog. "Hochtechnologie" basiert unmittelbar auf gründlicher Beherrschung der Physik. Die Physik hat für das technische Studium im Wesentlichen zwei Aufgaben zu erfüllen: Einerseits sollen Kenntnisse über physikalische Gesetzmäßigkeiten vermittelt werden, die für das Verständnis und die Beherrschung technischer Probleme notwendig sind; in dieser Beziehung ist die Physik Hilfswissenschaft der Technik. Andererseits ist ein wesentlicher Teil des modemen technischen Denkens "physikalisches Denken". Um die erste dieser Aufgaben zu erfüllen, würde es fast genügen, möglichst viele Tat bestände säuberlich geordnet und nummeriert mitzuteilen. Die zweite Aufgabe würde jedoch damit sicher nicht erfüllt. Wir halten sie aber für die weitaus wichtigere und haben uns daher bemüht, die Prinzipien und Methoden des physikalischen Denkens immer her auszustellen: Eindeutige Definitionen der Begriffe; Größen und Einheiten; klare Unter scheidung zwischen Axiom, Erfahrungstatsache und mathematischem Formalismus; Einführung von Modellvorstellungen - d.h. "vereinfachten Bildern der Wirklichkeit- deutliches Aufzeigen der Grenzen der jeweiligen Modelle; Verfeinerung der Modelle; soweit möglich; logische Ableitung neuer Tatsachen aus vorher bekannten oder bewiese nen. Dabei haben wir im Zweifelsfall dem physikalischen Verständnis den Vorzug gegeben gegenüber der oft kürzeren und eleganteren mathematisch-formalen Herleitung.
Read more

About the author

Prof. Dr. Paul Dobrinski, FH Hannover
Prof. Dr. Gunter Krakau, FH Regensburg
Prof. Dr. Anselm Vogel, FH München
Read more

Reviews

Loading...

Additional Information

Publisher
Springer-Verlag
Read more
Published on
Mar 9, 2013
Read more
Pages
703
Read more
ISBN
9783322938879
Read more
Read more
Best For
Read more
Language
German
Read more
Genres
Science / Applied Sciences
Science / Physics / General
Technology & Engineering / Mechanical
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Paul Dobrinski
Als wir 1970 die erste Auflage dieses Physik buches vorlegten, geschah es in der Überzeugung, daß dic Physik als Grundlagenfach für den Ingenieur in der Ausbildung und in der Praxis ständig an Bedeutung gewinnt. Das gilt sicher heute mehr denn je, Besonders die immer wichtiger werdende sog. "Hochtechnologie" basiert unmittelbar auf gründlicher Beherrschung der Physik. Die Physik hat für das technische Studium im wesentlichen zwei Aufgaben zu erfüllen: Einerseits sollen Kenntnisse über physikalische Gcsctzmäßigkeiten vermittelt werden, die für das Verständnis und die Beherrschung technischer Probleme notwendig sind; in dieser Beziehung ist die Physik Hilfswissenschaft der Technik. Andererseits ist ein wesentlicher Teil des modernen technischen Denkens "physikalisches Denken". Um die erste dieser Aufgaben zu erfüllen, würde es fast genügen, möglichst viele Tatbestände säuberlich geordnet und numeriert mitzuteilen. Die zweite Aufgabe würde jedoch damit sicher nicht erfüllt. Wir halten sie aber für die weitaus wichtigere und haben uns daher bemüht, die Prinzipien und Methoden des physikalischen Denkens immer herauszustellen: Eindeutige Definitionen der Begriffe, Größen und Einheiten; klare Unterscheidung zwischen Axiom, Erfahrungstatsache und mathemati schem Formalismus; Einführung von Modellvorstellungen - d. h. "vereinfachten Bildern der Wirklichkeit" -, deutliches Aufzeigen der Grenzen der jeweiligen Modelle, Verfeinerung der Modelle; soweit möglich, logische Ableitung neuer Tatsachen aus vorher bekannten oder bewiese nen. Dabei haben wir im Zweifelsfall dem physikalischen Verständnis den Vorzug gegeben gegenüber der oft kürzeren und eleganteren mathematisch-formalen Herleitung.
Paul Dobrinski
Als wir 1970 die erste Auflage dieses Physikbuches vorlegten, geschah es in der Überz- gung, dass die Physik als Grundlagenfach für den Ingenieur in der Ausbildung und in der Praxis ständig an Bedeutung gewinnt. Das gilt sicher heute mehr denn je. Besonders die immer wichtiger werdende sog. „Hochtechnologie“ basiert unmittelbar auf gründlicher Beherrschung der Physik. Die Physik hat für das technische Studium im Wesentlichen zwei Aufgaben zu erfüllen: Einerseits sollen Kenntnisse über physikalische Gesetzmäßigkeiten vermittelt werden, die für das Verständnis und die Beherrschung technischer Probleme notwendig sind; in dieser Beziehung ist die Physik Hilfswissenschaft der Technik. Andererseits ist ein wesentlicher Teil des modernen technischen Denkens „physikalisches Denken“. Um die erste dieser Aufgaben zu erfüllen, würde es fast genügen, möglichst viele T- bestände säuberlich geordnet und nummeriert mitzuteilen. Die zweite Aufgabe würde jedoch damit sicher nicht erfüllt. Wir halten sie aber für die weitaus wichtigere und haben uns daher bemüht, die Prinzipien und Methoden des physikalischen Denkens immer h- auszustellen: Eindeutige Definitionen der Begriffe; Größen und Einheiten; klare Unt- scheidung zwischen Axiom, Erfahrungstatsache und mathematischem Formalismus; Einführung von Modellvorstellungen – d.h. „vereinfachten Bildern der Wirklichkeit“ – deutliches Aufzeigen der Grenzen der jeweiligen Modelle; Verfeinerung der Modelle; soweit möglich, logische Ableitung neuer Tatsachen aus vorher bekannten oder bewie- nen. Dabei haben wir im Zweifelsfall dem physikalischen Verständnis den Vorzug gegeben gegenüber der oft kürzeren und eleganteren mathematisch-formalen Herleitung.
Paul Dobrinski
Als wir 1970 die erste Auflage dieses Physikbuches vorlegten, geschah es in der Überz- gung, dass die Physik als Grundlagenfach für den Ingenieur in der Ausbildung und in der Praxis ständig an Bedeutung gewinnt. Das gilt sicher heute mehr denn je. Besonders die immer wichtiger werdende sog. „Hochtechnologie“ basiert unmittelbar auf gründlicher Beherrschung der Physik. Die Physik hat für das technische Studium im Wesentlichen zwei Aufgaben zu erfüllen: Einerseits sollen Kenntnisse über physikalische Gesetzmäßigkeiten vermittelt werden, die für das Verständnis und die Beherrschung technischer Probleme notwendig sind; in dieser Beziehung ist die Physik Hilfswissenschaft der Technik. Andererseits ist ein wesentlicher Teil des modernen technischen Denkens „physikalisches Denken“. Um die erste dieser Aufgaben zu erfüllen, würde es fast genügen, möglichst viele T- bestände säuberlich geordnet und nummeriert mitzuteilen. Die zweite Aufgabe würde jedoch damit sicher nicht erfüllt. Wir halten sie aber für die weitaus wichtigere und haben uns daher bemüht, die Prinzipien und Methoden des physikalischen Denkens immer h- auszustellen: Eindeutige Definitionen der Begriffe; Größen und Einheiten; klare Unt- scheidung zwischen Axiom, Erfahrungstatsache und mathematischem Formalismus; Einführung von Modellvorstellungen – d.h. „vereinfachten Bildern der Wirklichkeit“ – deutliches Aufzeigen der Grenzen der jeweiligen Modelle; Verfeinerung der Modelle; soweit möglich, logische Ableitung neuer Tatsachen aus vorher bekannten oder bewie- nen. Dabei haben wir im Zweifelsfall dem physikalischen Verständnis den Vorzug gegeben gegenüber der oft kürzeren und eleganteren mathematisch-formalen Herleitung.
Paul Dobrinski
Als wir 1970 die erste Auflage dieses Physikbuches vorlegten, geschah es in der Überzeugung, daß die Physik als Grundlagenfach für den Ingenieur in der Ausbildung und in der Praxis ständig an Bedeutung gewinnt. Das gilt sicher heute mehr denn je. Besonders die immer wichtiger werdende sog. "Hochtechnologie" basiert unmittelbar auf gründlicher Beherrschung der Physik. Die Physik hat für das technische Studium im wesentlichen zwei Aufgaben zu erfüllen: Einerseits sollen Kenntnisse über physikalische Gesetzmäßigkeiten vermittelt werden, die für das Verständnis und die Beherrschung technischer Probleme notwendig sind; in dieser Beziehung ist die Physik Hilfswissenschaft der Technik. Andererseits ist ein wesentlicher Teil des modernen technischen Denkens "physikalisches Denken". Um die erste dieser Aufgaben zu erfüllen, würde es fast genügen, möglichst viele Tatbestände säuberlich geordnet und numeriert mitzuteilen. Die zweite Aufgabe würde jedoch damit sicher nicht erfüllt. Wir halten sie aber für die weitaus wichtigere und haben uns daher bemüht, die Prinzipien und Methoden des physikalischen Denkens immer herauszustellen: Eindeutige Definitionen der Begriffe, Größen und Einheiten; klare Unterscheidung zwischen Axiom, Erfahrungstatsache und mathemati schem Formalismus; Einführung von Modellvorstellungen - d. h. "vereinfachten Bildern der Wirklichkeit" -, deutliches Aufzeigen der Grenzen der jeweiligen Modelle, Verfeinerung der Modelle; soweit möglich, logische Ableitung neuer Tatsachen aus vorher bekannten oder bewiese nen. Dabei haben wir im Zweifelsfall dem physikalischen Verständnis den Vorzug gegeben gegenüber der oft kürzeren und eleganteren mathematisch-formalen Herleitung.
Paul Dobrinski
Als wir 1970 die erste Auflage dieses Physik buches vorlegten, geschah es in der Überzeugung, daß die Physik als Grundlagenfach für den Ingenieur in der Ausbildung und in der Praxis ständig an Bedeutung gewinnt. Das gilt sicher auch heute noch. Die Physik hat für das technische Studium im wesentlichen zwei Aufgaben zu erfüllen: Einerseits sollen Kenntnisse über physikalische Gesetzmäßigkeiten vermittelt werden, die für das Verständnis und die Beherrschung technischer Probleme notwendig sind; in dieser Beziehung ist die Physik Hilfswissenschaft der Technik. Andererseits ist ein wesentlicher Teil des modernen technischen Denkens "physikalisches Denken"; hier stellt die Physik für den Ingenieur sozusagen geistiges Übungs gelände dar. Um die erste dieser Aufgaben zu erfüllen, würde es fast genügen, möglichst viele Tatbestände säuberlich geordnet und numeriert mitzuteilen. Die zweite Aufgabe würde jedoch damit sicher nicht erfüllt. Wir halten sie aber für die weitaus wichtigere und haben uns daher bemüht, die Prinzipien und Methoden des physikalischen Denkens immer herauszustellen: Eindeutige Definitionen der Begriffe, Größen und Einheiten; klare Unterscheidung zwischen Axiom, Erfahrungstatsache und mathematischem Formalismus; Einführung von Modellvorstellun gen - d.h. "vereinfachten Bildern der Wirklichkeit" -, deutliches Aufzeigen der Grenzen der jeweiligen Modelle, Verfeinerung der Modelle; soweit möglich, logische Ableitung neuer Tatsachen aus vorher bekannten oder bewiesenen. Dabei haben wir im Zweifelsfall dem physikalischen Verständnis den Vorzug gegeben gegenüber der oft kürzeren und eleganteren mathematisch-formalen Herleitung.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.