The Laws of Thermodynamics: A Very Short Introduction

OUP Oxford
24
Free sample

From the sudden expansion of a cloud of gas or the cooling of a hot metal, to the unfolding of a thought in our minds and even the course of life itself, everything is governed by the four Laws of Thermodynamics. These laws specify the nature of 'energy' and 'temperature', and are soon revealed to reach out and define the arrow of time itself: why things change and why death must come. In this Very Short Introduction Peter Atkins explains the basis and deeper implications of each law, highlighting their relevance in everyday examples. Using the minimum of mathematics, he introduces concepts such as entropy, free energy, and to the brink and beyond of the absolute zero temperature. These are not merely abstract ideas: they govern our lives. In this concise and compelling introduction Atkins paints a lucid picture of the four elegant laws that, between them, drive the Universe. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Read more
Collapse

More by Peter Atkins

See more
3.8
24 total
Loading...

Additional Information

Publisher
OUP Oxford
Read more
Collapse
Published on
Mar 25, 2010
Read more
Collapse
Pages
120
Read more
Collapse
ISBN
9780191614385
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / General
Science / Mechanics / Thermodynamics
Science / Philosophy & Social Aspects
Science / Physics / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Any literate person should be familiar with the central ideas of modern science. In his sparkling new book, Peter Atkins introduces his choice of the ten great ideas of science. With wit, charm, patience, and astonishing insights, he leads the reader through the emergence of the concepts, and then presents them in a strikingly effective manner. At the same time, he works into his engaging narrative an illustration of the scientific method and shows how simple ideas can have enormous consequences. His choice of the ten great ideas are: * Evolution occurs by natural selection, in which the early attempts at explaining the origin of species is followed by an account of the modern approach and some of its unsolved problems. * Inheritance is encoded in DNA, in which the story of the emergence of an understanding of inheritance is followed through to the mapping of the human genome. * Energy is conserved, in which we see how the central concept of energy gradually dawned on scientists as they mastered the motion of particles and the concept of heat. * All change is the consequence of the purposeless collapse of energy and matter into disorder, in which the extraordinarily simple concept of entropy is used to account for events in the world. * Matter is atomic, in which we see how the concept of atoms emerged and how the different personalities of the elements arise from the structures of their atoms. * Symmetry limits, guides, and drives, in which we see how concepts related to beauty can be extended to understand the nature of fundamental particles and the forces that act between them. * Waves behave like particles and particles behave like waves, in which we see how old familiar ideas gave way to the extraordinary insights of quantum theory and transformed our perception of matter. * The universe is expanding, in which we see how a combination of astronomy and a knowledge of elementary particles accounts for the origin of the universe and its long term future. * Spacetime is curved by matter, in which we see the emergence of the theories of special and general relativity and come to understand the nature of space and time. * If arithmetic is consistent, then it is incomplete, in which we learn the origin of numbers and arithmetic, see how the philosophy of mathematics lets us understand the nature of this most cerebral of subjects, and are brought to the limits of its power. C. P. Snow once said 'not knowing the second law of thermodynamics is like never having read a work by Shakespeare'. This is an extraordinary, exciting book that not only will make you literate in science but give you deep enjoyment on the way.
Grappling with the first and second laws of thermodynamics can test the intellectual mettle of even the most dedicated student of the physical sciences. Approaching the subject for the first time may raise more queries and doubts than are usually handled in the basic, straightforward textbook.
Based on a series of lectures delivered to 500 sophomore engineering students at Rensselaer Polytechnic Institute, Dr. Van Neer's clear, lucid treatment is readily comprehensible by undergraduate-level science and engineering students. His language is informal, his examples are vivid and lively, his perspective is fresh. This book, a companion to a basic textbook, discusses thermodynamics, a topic of profound importance in the study of physics, in a manner which elucidates fundamental concepts and demonstrates their practical applicability.
In these increasingly energy-conscious and costly times, as traditional energy sources are being depleted and revolutionary new sources are contemplated, appreciating the consequences of the laws of thermodynamics is more than a fascinating avenue of intellectual inquiry: it is a pragmatic concern imperative to all — students, scientists, engineers, technicians, politicians, businessmen, and anyone facing the energy challenges of the future. Here is help understanding concepts which will prove all-important in the next century.
Dr. H. C. Van Ness is a distinguished professor of chemical engineering at Rensselaer Polytechnic Institute and co-author of several textbooks on thermodynamics. He is an unsurpassed as an expert in the field.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.