Weak Links: The Universal Key to the Stability of Networks and Complex Systems

Springer Science & Business Media
1
Free sample

How can our societies be stabilized in a crisis? Why can we enjoy and understand Shakespeare? Why are fruitflies uniform? How do omnivorous eating habits aid our survival? What makes the Mona Lisa’s smile beautiful? How do women keep our social structures intact? – Could there possibly be a single answer to all these questions? This book shows that the statement: "weak links stabilize complex systems" provides the key to understanding each of these intriguing puzzles, and many others too. The author (recipient of several distinguished science communication prizes) uses weak (low affinity, low probability) interactions as a thread to introduce a vast variety of networks from proteins to economics and ecosystems. Many people, from Nobel Laureates to high-school students have helped to make the book understandable to all interested readers. This unique book and the ideas it develops will have a significant impact on many, seemingly diverse, fields of study.
Read more

About the author

Peter Csermely (50) is a professor at the Semmelweis University in Budapest. A former Fogarty Fellow at Harvard University, his main fields of study are molecular chaperones and networks. In 1996 Dr. Csermely launched a highly successful initiative providing research opportunities for more than 10,000 gifted high school students. He also established the Hungarian National Talent Support Council and the Network of Youth Excellence, www.nyex.info, promoting similar activities in 33 countries. He has published 11 books and more than 200 research papers. Dr. Csermely holds several distinguished appointments including membership of the Wise Persons' Council of the Hungarian President, vice-president of the Hungarian Biochemical Society and has been recipient of numerous international fellowships and awards, for example the 2003 Science Communication Award of the European Molecular Biology Organization and the 2004 Descartes Award of the European Union for Science Communication.

Read more
5.0
1 total
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Jun 11, 2009
Read more
Pages
392
Read more
ISBN
9783540311577
Read more
Language
English
Read more
Genres
Nature / General
Science / Earth Sciences / Geology
Science / General
Science / Life Sciences / Biochemistry
Science / Life Sciences / Biophysics
Science / Life Sciences / Ecology
Science / Physics / General
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
"This is science writing as wonder and as inspiration." —The Wall Street Journal

Wall Street Journal

From one of the most influential scientists of our time, a dazzling exploration of the hidden laws that govern the life cycle of everything from plants and animals to the cities we live in.

Visionary physicist Geoffrey West is a pioneer in the field of complexity science, the science of emergent systems and networks. The term “complexity” can be misleading, however, because what makes West’s discoveries so beautiful is that he has found an underlying simplicity that unites the seemingly complex and diverse phenomena of living systems, including our bodies, our cities and our businesses.

Fascinated by aging and mortality, West applied the rigor of a physicist to the biological question of why we live as long as we do and no longer. The result was astonishing, and changed science: West found that despite the riotous diversity in mammals, they are all, to a large degree, scaled versions of each other. If you know the size of a mammal, you can use scaling laws to learn everything from how much food it eats per day, what its heart-rate is, how long it will take to mature, its lifespan, and so on. Furthermore, the efficiency of the mammal’s circulatory systems scales up precisely based on weight: if you compare a mouse, a human and an elephant on a logarithmic graph, you find with every doubling of average weight, a species gets 25% more efficient—and lives 25% longer. Fundamentally, he has proven, the issue has to do with the fractal geometry of the networks that supply energy and remove waste from the organism’s body.

West’s work has been game-changing for biologists, but then he made the even bolder move of exploring his work’s applicability. Cities, too, are constellations of networks and laws of scalability relate with eerie precision to them. Recently, West has applied his revolutionary work to the business world. This investigation has led to powerful insights into why some companies thrive while others fail. The implications of these discoveries are far-reaching, and are just beginning to be explored. Scale is a thrilling scientific adventure story about the elemental natural laws that bind us together in simple but profound ways. Through the brilliant mind of Geoffrey West, we can envision how cities, companies and biological life alike are dancing to the same simple, powerful tune.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.