Practical Statistics for Astronomers

Cambridge Observing Handbooks for Research Astronomers

Book 8
Cambridge University Press
Free sample

Astronomy needs statistical methods to interpret data, but statistics is a many-faceted subject that is difficult for non-specialists to access. This handbook helps astronomers analyze the complex data and models of modern astronomy. This second edition has been revised to feature many more examples using Monte Carlo simulations, and now also includes Bayesian inference, Bayes factors and Markov chain Monte Carlo integration. Chapters cover basic probability, correlation analysis, hypothesis testing, Bayesian modelling, time series analysis, luminosity functions and clustering. Exercises at the end of each chapter guide readers through the techniques and tests necessary for most observational investigations. The data tables, solutions to problems, and other resources are available online at www.cambridge.org/9780521732499. Bringing together the most relevant statistical and probabilistic techniques for use in observational astronomy, this handbook is a practical manual for advanced undergraduate and graduate students and professional astronomers.
Read more
Collapse

About the author

J. V. Wall is Adjunct Professor in the Department of Physics and Astronomy, University of British Columbia and Visiting Professor at the University of Oxford.

C. R. Jenkins is a Research Scientist in Earth Sciences and Resource Engineering at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia.

Read more
Collapse
Loading...

Additional Information

Publisher
Cambridge University Press
Read more
Collapse
Published on
Apr 26, 2012
Read more
Collapse
Pages
375
Read more
Collapse
ISBN
9781107393707
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Probability & Statistics / General
Science / Astronomy
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.
As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers.

Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest.


Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets
Features real-world data sets from contemporary astronomical surveys
Uses a freely available Python codebase throughout
Ideal for students and working astronomers
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.