Advances in Bacterial Electron Transport Systems and Their Regulation

Advances in Microbial Physiology

Book 68
Academic Press
Free sample

Advances in Microbial Physiology: Advances in Bacterial Electron Transport Systems and Their Regulation, the latest volume in the Advances in Microbial Physiology series, continues the long tradition of topical and important reviews in microbiology, with this latest volume focusing on the advances in bacterial electron transport systems and their regulation.
  • Contains contributions from leading authorities in the field of microbial physiology
  • Informs and updates on all the latest developments in the field
  • Presents a primary focus for this edition on the advances made in bacterial electron transport systems and their regulation
Read more
Collapse

About the author

Professor Robert Poole is West Riding Professor of Microbiology at the University of Sheffield. He has >35 years’ experience of bacterial physiology and bioenergetics, in particular O2-, CO- and NO-reactive proteins, and has published >300 papers (h=48, 2013). He was Chairman of the Plant and Microbial Sciences Committee of the UK Biotechnology and Biological Sciences Research Council and has held numerous grants from BBSRC, the Wellcome and Leverhulme Trusts and the EC. He coordinates an international SysMO systems biology consortium. He published pioneering studies of bacterial oxidases and globins and discovered the bacterial flavohaemoglobin gene (hmp) and its function in NO detoxification He recently published the first systems analyses of responses of bacteria to novel carbon monoxide-releasing molecules (CORMs) and is a world leader in NO, CO and CORM research.

Read more
Collapse
Loading...

Additional Information

Publisher
Academic Press
Read more
Collapse
Published on
Apr 28, 2016
Read more
Collapse
Pages
594
Read more
Collapse
ISBN
9780128052396
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Life Sciences / Bacteriology
Science / Life Sciences / Microbiology
Science / Life Sciences / Molecular Biology
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The clostridia are a group of bacteria of considerable medical and economic importance and include species responsible for generating the most potent toxins known to humans. The Clostridia: Molecular Biology and Pathogenesis is a unique work, comprising the most complete reference on the clostridia for over 20 years, bringing together the results from some of the most innovative and exciting research in the past decade. Using a principle-oriented rather than taxonomic approach, the results from molecular biology research are placed in the context of their clinical significance, and the disease process as a whole. This state-of-the-art work is truly comprehensive, covering and integrating the diverse topics of genetics, physiology, pathogenesis and cell biology. Written and edited by world-renowned authorities, material is presented to give the reader an up-to-date knowledge of the pathogenic species of this important genus. Background information is followed by details of the genetics, molecular biology, biochemistry and disease mechanisms. The structure, function and mode of action of toxins and other virulence determinants is clearly presented. As such, this work will prove essential for students, teachers, research microbiologists, infectious disease clinicians, toxin specialists, and all those working in medical or veterinary bacteriology, microbial genetics and the pharmaceutical industries.Covers appropriate medical and veterinary topicsContains authoritative contributions by international expertsPresents the current state of knowledge and areas for future researchTruly comprehensive--covers topics from molecular biology and physiology
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits.

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria.

Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress.

Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells.

Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.