Introduction to Infrared and Electro-optical Systems

Free sample

This newly revised and updated edition of a classic Artech House book offers a current and complete and introduction to the analysis and design of Electro-Optical Systems (EO) imaging systems. The Second Edition provides numerous updates and brand new coverage of todays most important areas, including the integrated spatial frequency approach and a focus on the weapons of terrorists as objects of interest. This comprehensive reference details the principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems and shows you how to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. This practical resource includes over 780 time-saving equations.
Read more

About the author

Ronald G. Driggers holds a Ph.D. in electrical engineering from the University of Memphis. He is a senior engineer with the U.S. Army Night Vision and Electronic Sensors Directorate and is the U.S. representative to the NATO panel on advanced thermal imager characterization. Dr. Driggers is the author of two other books on infrared and electro-optic systems and has published over 30 refereed journal papers.

Read more

Reviews

Loading...

Additional Information

Publisher
Artech House
Read more
Published on
Dec 31, 2012
Read more
Pages
583
Read more
ISBN
9781608071005
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Technology & Engineering / Optics
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Daryl Inniss
Silicon photonics uses chip-making techniques to fabricate photonic circuits. The emerging technology is coming to market at a time of momentous change. The need of the Internet content providers to keep scaling their data centers is becoming increasing challenging, the chip industry is facing a future without Moore’s law, while telcos must contend with a looming capacity crunch due to continual traffic growth.

Each of these developments is significant in its own right. Collectively, they require new thinking in the design of chips, optical components, and systems. Such change also signals new business opportunities and disruption.

Notwithstanding challenges, silicon photonics’ emergence is timely because it is the future of several industries. For the optical industry, the technology will allow designs to be tackled in new ways. For the chip industry, silicon photonics will become the way of scaling post-Moore’s law. New system architectures enabled by silicon photonics will improve large-scale computing and optical communications.

Silicon Photonics: Fueling the Next Information Revolution

outlines the history and status of silicon photonics. The book discusses the trends driving the datacom and telecom industries, the main but not the only markets for silicon photonics. In particular, developments in optical transport and the data center are discussed as are the challenges. The book details the many roles silicon photonics will play, from wide area networks down to the chip level. Silicon photonics is set to change the optical components and chip industries; this book explains how.Captures the latest research assessing silicon photonics development and prospectsDemonstrates how silicon photonics addresses the challenges of managing bandwidth over distance and within systemsExplores potential applications of SiP, including servers, datacenters, and Internet of Things
Keith J. Kasunic
Covers the fundamental principles behind optomechanical design

This book emphasizes a practical, systems-level overview of optomechanical engineering, showing throughout how the requirements on the optical system flow down to those on the optomechanical design. The author begins with an overview of optical engineering, including optical fundamentals as well as the fabrication and alignment of optical components such as lenses and mirrors. The concepts of optomechanical engineering are then applied to the design of optical systems, including the structural design of mechanical and optical components, structural dynamics, thermal design, and kinematic design.

 Optomechanical Systems Engineering:

Reviews the fundamental concepts of optical engineering as they apply to optomechanical design Illustrates the fabrication and alignment requirements typically found in an optical system Examines the elements of structural design from a mechanical, optical, and vibrational viewpoint Develops the thermal management principles of temperature and distortion control Describes the optomechanical requirements for kinematic and semi-kinematic mounts Uses examples and case studies to illustrate the concepts and equations presented in the book Provides supplemental materials on a companion website

Focusing on fundamental concepts and first-order estimates of optomechanical system performance, Optomechanical Systems Engineering is accessible to engineers, scientists, and managers who want to quickly master the principles of optomechanical engineering.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.