Newton And Modern Physics

World Scientific
Free sample

This book looks at how Newton's theories can be linked to modern day problems and solutions in physics. Newton created an abstract system of theorizing which has been applied to all aspects of the physical world, however he had difficulties in persuading his contemporaries of its unique merits. A detailed study of Newton's writings, published and unpublished, suggests that he had an almost archetypally powerful mode of thinking guaranteed to produce 'correct' results even in areas of physics where systematic study only began long after his time. Newton and Modern Physics investigates this phenomenon, looking at examples of where Newton's principles have relevance to modern day thinking — the study of Newton's work in both seventeenth century and present-day contexts helps to enhance our understanding of both.

This unique book is published as the first of a three-part set for Newtonian scholars, historians of science, philosophers of science and others interested in Newtonian physics.

All Titles:

1.Newton and Modern Physics
2.Newton and the Great World System
3.Newton — Innovation and Controversy Contents: Aspects of the Newtonian MethodologyNewton the ManWavesThe Velocity of LightMass-EnergyQuantum TheoryThe Electric ForceWave-Particle Duality and the Unified Field
Readership: Newtonian scholars, historians of science, philosophers of science and others interested in Newtonian physics.
Keywords: Newton;Newtonian Physics;Velocity of Light;Quantum Theory;Wave-Particle;Mass-EnergyReview:0
Read more
Collapse
Loading...

Additional Information

Publisher
World Scientific
Read more
Collapse
Published on
Aug 7, 2017
Read more
Collapse
Pages
312
Read more
Collapse
ISBN
9781786343321
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / General
Science / History
Science / Physics / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
In modern physics, various fundamental problems have become topics of ongoing debate. There was the 20th century climb to a Standard Model, still accurate at the highest energy levels obtainable so far. But, since the 1970's, a different approach to physics advocates for theories such as string theory, known for their mathematical elegance, even though they either cannot be verified in data or contradict presently known experimental results. In philosophy of physics, there is a gradually emerging consensus that philosophy of physics and physics somehow contribute to a common enterprise. But, there is little sign of progress toward consensus about the nature of that unity. All the while, it is generally recognized that physics is interdisciplinary. There are, of course, differences in focus. But, implicitly at least, there are no "sharp dividing lines" between physics and philosophy of physics; pure and applied physics; physical chemistry; biophysics; medical physics; history and philosophy of physics; physics and society; physics education; and so on. What, then, is progress in physics? The question here is not about ideal structures, but asks about what is going on in physics. Beginnings in discerning the presence of eight main tasks help reveal the (pre-) emergence of a normative omni-disciplinary basis for collaboration that, once adverted to, promises to be constitutive of a new and increasingly effective control of meaning. Originally discovered by Bernard Lonergan in 1965, progress in the new collaboration will not seek to eliminate specialized expertise. It will, though, divide tasks within an eightfold functional division of labor. This book invites attention to data for each of the eight main tasks evident and self-evident in existing scholarship in the community. The book also makes preliminary efforts toward envisioning something of what functional collaboration will look like — in physics, the Academy and Society.
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior.

This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed). Many of these objections rightly call into question typical conceptions of emergence found in the philosophy literature.

This book explores whether physics points to a reductive or an emergent structure of the world and proposes a physics-motivated conception of emergence that leaves behind many of the problematic intuitions shaping the philosophical conceptions. Examining several detailed case studies reveal that the structure of physics and the practice of physics research are both more interesting than is captured in this reduction/emergence debate. The results point to stability conditions playing a crucial though underappreciated role in the physics of emergence. This contextual emergence has thought-provoking consequences for physics and beyond, and will be of interest to physics students, researchers, as well as those interested in physics.

Mathematics is, in many ways, the most generic and abstract of all systems of human thought. Once Newton found he could describe dynamics and planetary motions using purely mathematical laws and deductive processes, he understood that there was no limit to what else could be explained — given time and ingenuity every aspect of Nature would find its mathematical roots. Newton himself repeatedly stated how aspects of chemistry, biology and even human thought could be accessed by his method. He also acknowledged how immense the task would be, involving many contributors over many centuries, however once the system was in place, it could be extended indefinitely. Although not fully understood during his lifetime, the Newtonian method has since been applied to many subjects outside of physics, including chemistry, physiology and philosophy. This book analyses the Newtonian method and demonstrates how it represents the very roots of our understanding of the great world system we live in today.

This unique book is published as the second of a three-part set for Newtonian scholars, historians of science, philosophers of science and others interested in Newtonian physics.

All Titles:

1.Newton and Modern Physics
2.Newton and the Great World System
3.Newton — Innovation and Controversy Contents: PrefaceAbout the AuthorMetaphysics and MethodologyMathematicsSpace, Time and MotionMass, Momentum and EnergyGravityThe System of the WorldAstrophysics and CosmologyGravity and InertiaBibliographyIndex
Readership: Newtonian scholars, historians of science, philosophers of science and others interested in Newtonian physics.
Keywords: Newton;Newtonian Physics;Newtonian Method;Cosmology;MathematicsReview:0
A good book may have the power to change the way we see the world, but a great book actually becomes part of our daily consciousness, pervading our thinking to the point that we take it for granted, and we forget how provocative and challenging its ideas once were—and still are. The Structure of Scientific Revolutions is that kind of book. When it was first published in 1962, it was a landmark event in the history and philosophy of science. Fifty years later, it still has many lessons to teach.

With The Structure of Scientific Revolutions, Kuhn challenged long-standing linear notions of scientific progress, arguing that transformative ideas don’t arise from the day-to-day, gradual process of experimentation and data accumulation but that the revolutions in science, those breakthrough moments that disrupt accepted thinking and offer unanticipated ideas, occur outside of “normal science,” as he called it. Though Kuhn was writing when physics ruled the sciences, his ideas on how scientific revolutions bring order to the anomalies that amass over time in research experiments are still instructive in our biotech age.

This new edition of Kuhn’s essential work in the history of science includes an insightful introduction by Ian Hacking, which clarifies terms popularized by Kuhn, including paradigm and incommensurability, and applies Kuhn’s ideas to the science of today. Usefully keyed to the separate sections of the book, Hacking’s introduction provides important background information as well as a contemporary context. Newly designed, with an expanded index, this edition will be eagerly welcomed by the next generation of readers seeking to understand the history of our perspectives on science.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.