Synergies of Soft Computing and Statistics for Intelligent Data Analysis

Advances in Intelligent Systems and Computing

Free sample

In recent years there has been a growing interest to extend classical methods for data analysis.
The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance.
Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness --- various types of incomplete or subjective information have to be handled.
About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS).

This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis.
It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics.
Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.

Read more

Additional Information

Springer Science & Business Media
Read more
Published on
Sep 13, 2012
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Computers / Intelligence (AI) & Semantics
Technology & Engineering / General
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
We are glad to present the proceedings of the 5th biennial conference in the Intelligent Data Analysis series. The conference took place in Berlin, Germany, August 28–30, 2003. IDA has by now clearly grown up. Started as a small si- symposium of a larger conference in 1995 in Baden-Baden (Germany) it quickly attractedmoreinterest(bothsubmission-andattendance-wise),andmovedfrom London (1997) to Amsterdam (1999), and two years ago to Lisbon. Submission ratesalongwiththeeverimprovingqualityofpapershaveenabledtheor- nizers to assemble increasingly consistent and high-quality programs. This year we were again overwhelmed by yet another record-breaking submission rate of 180 papers. At the Program Chairs meeting we were – based on roughly 500 reviews – in the lucky position of carefully selecting 17 papers for oral and 42 for poster presentation. Poster presenters were given the opportunity to summarize their papers in 3-minute spotlight presentations. The oral, spotlight and poster presentations were then scheduled in a single-track, 2. 5-day conference program, summarized in this book. In accordance with the goal of IDA, “to bring together researchers from diverse disciplines,” we achieved a nice balance of presentations from the more theoreticalside(bothstatisticsandcomputerscience)aswellasmoreapplicati- oriented areas that illustrate how these techniques can be used in practice. Work presented in these proceedings ranges from theoretical contributions dealing, for example, with data cleaning and compression all the way to papers addressing practical problems in the areas of text classi?cation and sales-rate predictions. A considerable number of papers also center around the currently so popular applications in bioinformatics.
The human brain has some capabilities that the brains of other animals lack. It is to these distinctive capabilities that our species owes its dominant position. Other animals have stronger muscles or sharper claws, but we have cleverer brains. If machine brains one day come to surpass human brains in general intelligence, then this new superintelligence could become very powerful. As the fate of the gorillas now depends more on us humans than on the gorillas themselves, so the fate of our species then would come to depend on the actions of the machine superintelligence. But we have one advantage: we get to make the first move. Will it be possible to construct a seed AI or otherwise to engineer initial conditions so as to make an intelligence explosion survivable? How could one achieve a controlled detonation? To get closer to an answer to this question, we must make our way through a fascinating landscape of topics and considerations. Read the book and learn about oracles, genies, singletons; about boxing methods, tripwires, and mind crime; about humanity's cosmic endowment and differential technological development; indirect normativity, instrumental convergence, whole brain emulation and technology couplings; Malthusian economics and dystopian evolution; artificial intelligence, and biological cognitive enhancement, and collective intelligence. This profoundly ambitious and original book picks its way carefully through a vast tract of forbiddingly difficult intellectual terrain. Yet the writing is so lucid that it somehow makes it all seem easy. After an utterly engrossing journey that takes us to the frontiers of thinking about the human condition and the future of intelligent life, we find in Nick Bostrom's work nothing less than a reconceptualization of the essential task of our time.
Alle Prozesse in der Natur enthalten eine oder mehrere ungewisse Komponenten, zeigen Ungewißheiten oder haben einen mehr oder weniger ungewissen Ausgang. Dabei kann man unterscheiden, ob man einen Vorgang -oder einen Teil davon -als ungewiß ansieht, weil man ihn nicht exakt deterministisch erfassen kann (z. B. die Kursentwicklung an einer Wertpapierbörse), ob man ihn als genuin zufällig ansieht (z. B. den radioaktiven Zerfall eines Stoffes) oder ob die Ungewißheit des Vorgangs von seiner Beschreibung mit vagen Begriffen herrührt. Unsere heutigen sehr kom plexen sozialen und technischen Strukturen sind ohne den Einsatz von Verfahren zur Behandlung ungewisser Effekte nicht mehr vorstellbar, wenn man z. B. nur an Lebens-und Krankenversicherungen einerseits und an die Berechnung der Zu verlässigkeit technischer Systeme und Prozesse andererseits denkt. Die Entwicklung mathematischer Werkzeuge zur Wahrscheinlichkeitsrechnung und Statistik führte zu der bis in unser Jahrhundert unangefochtenen Stellung der Stochastik als der besten wissenschaftlichen Methode zur Behandlung von Aspekten der Ungewißheit. In der zweiten Hälfte des 20. Jahrhunderts etablierte sich dann die Fuzzy Theorie, die Lotfi Zadeh in der Arbeit "Fuzzy Sets" (1965) als Verallgemeinerung der Can torschen Mengentheorie begründete, als eine ernstzunehmende Konkurrentin für die Aufgabe, Ungewißheiten zu modellieren. Die weiteren Entwicklungen brachten eine über Jahrzehnte geführte Auseinandersetzung zwischen Stochastikern und Vertre tern der Fuzzy Theorie, aber auch eine überaus erfolgreiche Anwendung der Theorie in vielen Bereichen der angewandten Wissenschaften und der Industrie.
The International Conference on Information Processing and Management of - certainty in Knowledge-Based Systems, IPMU, is organized every two years with the aim of bringing together scientists working on methods for the management of uncertainty and aggregation of information in intelligent systems. Since 1986, this conference has been providing a forum for the exchange of ideas between th theoreticians and practitioners working in these areas and related ?elds. The 13 IPMU conference took place in Dortmund, Germany, June 28–July 2, 2010. This volume contains 79 papers selected through a rigorous reviewing process. The contributions re?ect the richness of research on topics within the scope of the conference and represent several important developments, speci?cally focused on theoretical foundations and methods for information processing and management of uncertainty in knowledge-based systems. We were delighted that Melanie Mitchell (Portland State University, USA), Nihkil R. Pal (Indian Statistical Institute), Bernhard Sch ̈ olkopf (Max Planck I- titute for Biological Cybernetics, Tubing ̈ en, Germany) and Wolfgang Wahlster (German Research Center for Arti?cial Intelligence, Saarbruc ̈ ken) accepted our invitations to present keynote lectures. Jim Bezdek received the Kamp ́ede F ́ eriet Award, granted every two years on the occasion of the IPMU conference, in view of his eminent research contributions to the handling of uncertainty in clustering, data analysis and pattern recognition.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.