Reliability-based Structural Design

Springer Science & Business Media
1
Free sample

As modern structures require more critical and complex designs, the need for accurate approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes and operational environments has increased significantly. Reliability assessment techniques help to develop safe designs and identify where significant contributors of uncertainty occur in structural systems, or, where further research, testing and quality control could increase the safety and efficiency of the structure.

Reliability-based Structural Design provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. Probability theory, statistic methods, and reliability analysis methods including Monte Carlo Sampling, Latin hypercube sampling, first and second-Order reliability methods, stochastic finite element method, and stochastic optimization are discussed. In addition, the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion, for the reliability analysis of practical engineering problems is also examined. Detailed examples of practical engineering applications including an uninhabited joined-wing aircraft and a supercavitating torpedo are presented to illustrate the effectiveness of these methods.

Reliability-based Structural Design will be a valuable reference for graduate and post graduate students studying structural reliability, probabilistic analysis and optimization under uncertainty; as well as engineers, researchers, and technical managers who are concerned with theoretical fundamentals, computational implementations and applications for probabilistic analysis and design.

Read more

About the author

Dr Seung-Kyum Choi earned his PhD in mechanical and materials engineering at Wright State University, OH, USA. His research interests include structural reliability and probabilistic mechanics, statistical approaches to design of mechanical systems, and multidisciplinary design optimization.

Dr Ramana Grandhi is the distinguished professor of mechanical and materials engineering at Wright State University, OH, USA. His research interests are in multidisciplinary analysis and optimization, probabilistic mechanics, and metal forming. Dr Grandhi has conducted sponsored research for the US Air Force, US Navy, NSF, NASA, DARPA, GE, GM and Caterpillar. He is a fellow of the ASME and an associate fellow of the AIAA.

Dr Robert A. Canfield is an associate professor of aerospace engineering in the Department of Aeronautics and Astronautics at the Air Force Institute of Technology (AFIT), OH. USA. His research interests include structural optimization, multidisciplinary analysis and design methods, uncertainty quantification, structural dynamics and control, and aeroelasticity. He retired as a Lieutenant Colonel in the US Air Force, where he was the project engineer for the Automated Structural Optimization System (ASTROS), an AFIT instructor, the program manager for basic research in computational mathematics, the chief of plans and budget, and then the director of policy and integration at the Air Force Office of Scientific Research. He is an Associate Fellow of the AIAA, and he chaired the AIAA Multidisciplinary Design Optimization (MDO) Technical Committee for two years.

Read more
5.0
1 total
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Nov 15, 2006
Read more
Pages
306
Read more
ISBN
9781846284458
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Computers / Intelligence (AI) & Semantics
Science / Mechanics / General
Technology & Engineering / Automotive
Technology & Engineering / Manufacturing
Technology & Engineering / Mechanical
Technology & Engineering / Quality Control
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.