Latchup

Sold by John Wiley & Sons
1
Free sample

Interest in latchup is being renewed with the evolution of complimentary metal-oxide semiconductor (CMOS) technology, metal-oxide-semiconductor field-effect transistor (MOSFET) scaling, and high-level system-on-chip (SOC) integration.

Clear methodologies that grant protection from latchup, with insight into the physics, technology and circuit issues involved, are in increasing demand.

This book describes CMOS and BiCMOS semiconductor technology and their sensitivity to present day latchup phenomena, from basic over-voltage and over-current conditions, single event latchup (SEL) and cable discharge events (CDE), to latchup domino phenomena. It contains chapters focusing on bipolar physics, latchup theory, latchup and guard ring characterization structures, characterization testing, product level test systems, product level testing and experimental results. Discussions on state-of-the-art semiconductor processes, design layout, and circuit level and system level latchup solutions are also included, as well as:

  • latchup semiconductor process solutions for both CMOS to BiCMOS, such as shallow trench, deep trench, retrograde wells, connecting implants, sub-collectors, heavily-doped buried layers, and buried grids – from single- to triple-well CMOS;
  • practical latchup design methods, automated and bench-level latchup testing methods and techniques, latchup theory of logarithm resistance space, generalized alpha (a) space, beta (b) space, new latchup design methods– connecting the theoretical to the practical analysis, and;
  • examples of latchup computer aided design (CAD) methodologies, from design rule checking (DRC) and logical-to-physical design, to new latchup CAD methodologies that address latchup for internal and external latchup on a local as well as global design level.

Latchup acts as a companion text to the author’s series of books on ESD (electrostatic discharge) protection, serving as an invaluable reference for the professional semiconductor chip and system-level ESD engineer. Semiconductor device, process and circuit designers, and quality, reliability and failure analysis engineers will find it informative on the issues that confront modern CMOS technology. Practitioners in the automotive and aerospace industries will also find it useful. In addition, its academic treatment will appeal to both senior and graduate students with interests in semiconductor process, device physics, computer aided design and design integration.

Read more
Collapse

About the author

Steven H. Voldman is an IEEE Fellow for 'Contributions in ESD Protection in CMOS, Silicon on Insulator and Silicon Germanium Technology'. He has a B.S. engineering science from University of Buffalo (1979), a first M.S. EE (1981) from Massachusetts Institute of Technology (MIT), a second EE degree (engineering degree) from MIT,a M.S. in engineering physics (1986) and a Ph.D. EE (1991) from University of Vermont under IBM's Resident Study Fellow Program.

Since 1984, Voldman has provided experimental research, invention, chip design integration, circuit design, customer support and strategic planning for ESD and latchup. His latchup and ESD work consist of pioneering work on advanced CMS and BiCMOS semiconductor processing, and presently he is working on RF CMOS, RF BiCMOS silicon germanium (SiGe) technology, image processing and high-voltage smart power technology.

Dr Voldman has written over 150 technical papers between 1982 and 2007. He is a recipient of over 160 issued US patents and 80 US patents are pending, in the area of ESD and CMOS latchup, Dr Voldman is an author of the John Wiley & Sons ESD book series - the first book, ESD: Physics and Devices; the second book, ESD: Circuits and Devices; and the third book, ESD: RF Technology and Circuits - as well as a contri8butor to the book, Silicon Germanium: Technology, Modeling and Design. Dr. Voldman was chairman of the SEMATECHESD Working Group from 1995 to 2000, to establish a national strategy for ESD in the United Sates; this group initiated ESD technology benchmarking strategy, test structures and commercial test system strategy. Dr Voldman was also part of the SEMATECH vertical modulated well PTAB in 1992 that focused on MeV implantation of latchup. He is a member of the ESD Association Board of Directors, ESDA Education Committee, as well ESD Standards Chairman for Transmission Line Pulse (TLP) and Very Fast TLP (VF-LP) testing committee. He has served on various Symposia internationally from technical program committee to tutorials on ESD and latchup - EOS/ESD Symposium, International Reliability Physics (IRPS), Taiwan ESSD Symposium (T-ESDC), International Conference on Electromagnetic Compatibility (ICEMAC), International Physical and Failure Analysis (IPFA) Symposium and Bipolar/BiCMOS Circuit Technology Meeting (BCTM).

Steve Voldman Initiated the 'ESD on Campus' program to bring ESD lectures and interaction to university faculty and students internationally and has provided lectures in the United States, Europe, Taiwan, Singapore, Malaysia, Philippines, China and Thailand. Dr. Voldman received the ESD Association Outstanding Contribution Award in 2007.

Read more
Collapse
5.0
1 total
Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Collapse
Published on
Apr 15, 2008
Read more
Collapse
Pages
472
Read more
Collapse
ISBN
9780470516164
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Technology & Engineering / Electrical
Technology & Engineering / Electronics / Semiconductors
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
A thorough examination of lab-on-a-chip circuit-level operations to improve system performance

A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priority. CMOS Integrated Lab-on-a-Chip System for Personalized Biomedical Diagnosis provides insight toward the solution, with a comprehensive, multidisciplinary reference to the next wave of personalized medicine technology.

A standard complementary metal oxide semiconductor (CMOS) fabrication technology allows mass-production of large-array, miniaturized CMOS-integrated sensors from multi-modal domains with smart on-chip processing capability. This book provides an in-depth examination of the design and mechanics considerations that make this technology a promising platform for microfluidics, micro-electro-mechanical systems, electronics, and electromagnetics.

From CMOS fundamentals to end-user applications, all aspects of CMOS sensors are covered, with frequent diagrams and illustrations that clarify complex structures and processes. Detailed yet concise, and designed to help students and engineers develop smaller, cheaper, smarter lab-on-a-chip systems, this invaluable reference:

Provides clarity and insight on the design of lab-on-a-chip personalized biomedical sensors and systems Features concise analyses of the integration of microfluidics and micro-electro-mechanical systems Highlights the use of compressive sensing, super-resolution, and machine learning through the use of smart SoC processing Discusses recent advances in complementary metal oxide semiconductor-integrated lab-on-a-chip systems Includes guidance on DNA sequencing and cell counting applications using dual-mode chemical/optical and energy harvesting sensors

The conventional reliance on the microscope, flow cytometry, and DNA sequencing leaves diagnosticians tied to bulky, expensive equipment with a central problem of scale. Lab-on-a-chip technology eliminates these constraints while improving accuracy and flexibility, ushering in a new era of medicine. This book is an essential reference for students, researchers, and engineers working in diagnostic circuitry and microsystems.

This Third Edition updates a landmark text with the latest findings

The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques.

Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including:

Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material

In addition, readers will find fully updated and revised sections in each chapter.

Plus, two new chapters have been added:

Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge.

Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials.

An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Want to know how to use an electronic component? This first book of a three-volume set includes key information on electronics parts for your projects—complete with photographs, schematics, and diagrams. You’ll learn what each one does, how it works, why it’s useful, and what variants exist. No matter how much you know about electronics, you’ll find fascinating details you’ve never come across before.

Convenient, concise, well-organized, and precise

Perfect for teachers, hobbyists, engineers, and students of all ages, this reference puts reliable, fact-checked information right at your fingertips—whether you’re refreshing your memory or exploring a component for the first time. Beginners will quickly grasp important concepts, and more experienced users will find the specific details their projects require.

Unique: the first and only encyclopedia set on electronic components, distilled into three separate volumes Incredibly detailed: includes information distilled from hundreds of sources Easy to browse: parts are clearly organized by component type Authoritative: fact-checked by expert advisors to ensure that the information is both current and accurate Reliable: a more consistent source of information than online sources, product datasheets, and manufacturer’s tutorials Instructive: each component description provides details about substitutions, common problems, and workarounds Comprehensive: Volume 1 covers power, electromagnetism, and discrete semi-conductors; Volume 2 includes integrated circuits, and light and sound sources; Volume 3 covers a range of sensing devices.
Electrical Overstress (EOS) continues to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics. This bookteaches the fundamentals of electrical overstress and how to minimize and mitigate EOS failures. The text provides a clear picture of EOS phenomena, EOS origins, EOS sources, EOS physics, EOS failure mechanisms, and EOS on-chip and system design. It provides an illuminating insight into the sources of EOS in manufacturing, integration of on-chip, and system level EOS protection networks, followed by examples in specific technologies, circuits, and chips. The book is unique in covering the EOS manufacturing issues from on-chip design and electronic design automation to factory-level EOS program management in today’s modern world.

Look inside for extensive coverage on:

Fundamentals of electrical overstress, from EOS physics, EOS time scales, safe operating area (SOA), to physical models for EOS phenomena EOS sources in today’s semiconductor manufacturing environment, and EOS program management, handling and EOS auditing processing to avoid EOS failures EOS failures in both semiconductor devices, circuits and system Discussion of how to distinguish between EOS events, and electrostatic discharge (ESD) events (e.g. such as human body model (HBM), charged device model (CDM), cable discharge events (CDM), charged board events (CBE), to system level IEC 61000-4-2 test events) EOS protection on-chip design practices and how they differ from ESD protection networks and solutions Discussion of EOS system level concerns in printed circuit boards (PCB), and manufacturing equipment Examples of EOS issues in state-of-the-art digital, analog and power technologies including CMOS, LDMOS, and BCD EOS design rule checking (DRC), LVS, and ERC electronic design automation (EDA) and how it is distinct from ESD EDA systems EOS testing and qualification techniques, and Practical off-chip ESD protection and system level solutions to provide more robust systems

Electrical Overstress (EOS): Devices, Circuits and Systems is a continuation of the author’s series of books on ESD protection. It is an essential reference and a useful insight into the issues that confront modern technology as we enter the nano-electronic era.

Want to know how to use an electronic component? This second book of a three-volume set includes key information on electronics parts for your projects--complete with photographs, schematics, and diagrams. You'll learn what each one does, how it works, why it's useful, and what variants exist. No matter how much you know about electronics, you'll find fascinating details you've never come across before.

Perfect for teachers, hobbyists, engineers, and students of all ages, this reference puts reliable, fact-checked information right at your fingertips--whether you're refreshing your memory or exploring a component for the first time. Beginners will quickly grasp important concepts, and more experienced users will find the specific details their projects require.

Volume 2 covers signal processing, including LEDs, LCDs, audio, thyristors, digital logic, and amplification.

Unique: the first and only encyclopedia set on electronic components, distilled into three separate volumesIncredibly detailed: includes information distilled from hundreds of sourcesEasy to browse: parts are clearly organized by component typeAuthoritative: fact-checked by expert advisors to ensure that the information is both current and accurateReliable: a more consistent source of information than online sources, product datasheets, and manufacturer's tutorialsInstructive: each component description provides details about substitutions, common problems, and workaroundsComprehensive: Volume 1 covers power, electromagnetism, and discrete semiconductors; Volume 2 includes LEDs, LCDs, audio, thyristors, digital logic, and amplification; Volume 3 covers a range of sensing devices.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.