Introduction to Topology: Second Edition, Edition 2

Courier Corporation
1
Free sample

One of the most important milestones in mathematics in the twentieth century was the development of topology as an independent field of study and the subsequent systematic application of topological ideas to other fields of mathematics.
While there are many other works on introductory topology, this volume employs a methodology somewhat different from other texts. Metric space and point-set topology material is treated in the first two chapters; algebraic topological material in the remaining two. The authors lead readers through a number of nontrivial applications of metric space topology to analysis, clearly establishing the relevance of topology to analysis. Second, the treatment of topics from elementary algebraic topology concentrates on results with concrete geometric meaning and presents relatively little algebraic formalism; at the same time, this treatment provides proof of some highly nontrivial results. By presenting homotopy theory without considering homology theory, important applications become immediately evident without the necessity of a large formal program.
Prerequisites are familiarity with real numbers and some basic set theory. Carefully chosen exercises are integrated into the text (the authors have provided solutions to selected exercises for the Dover edition), while a list of notations and bibliographical references appear at the end of the book.
Read more
5.0
1 total
Loading...

Additional Information

Publisher
Courier Corporation
Read more
Published on
Apr 22, 2013
Read more
Pages
256
Read more
ISBN
9780486320182
Read more
Language
English
Read more
Genres
Mathematics / Topology
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. The book consists of three parts. The first part comprises the basic core of a course in complex analysis for junior and senior undergraduates. The second part includes various more specialized topics as the argument principle, the Schwarz lemma and hyperbolic geometry, the Poisson integral, and the Riemann mapping theorem. The third part consists of a selection of topics designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics selected include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces. The three geometries, spherical, euclidean, and hyperbolic, are stressed. Exercises range from the very simple to the quite challenging, in all chapters. The book is based on lectures given over the years by the author at several places, particularly the Interuniversity Summer School at Perugia (Italy), and also UCLA, Brown University, Valencia (Spain), and La Plata (Argentina). A native of Minnesota, the author did his undergraduate work at Yale University and his graduate work at UC Berkeley. After spending some time at MIT and at the Universidad Nacional de La Plata (Argentina), he joined the faculty at UCLA in 1968. The author has published a number of research articles and several books on functional analysis and analytic function theory. he is currently involved in the California K-12 education scene.
"As textbook and reference work, this is a valuable addition to the topological literature." — Mathematical Reviews
Designed as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.
There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff theorem, function spaces, uniform continuity and uniform spaces. The next two chapters are devoted to topics in point-set topology: various separation axioms, continua in Hausdorff spaces, real-valued functions, and more Chapter IV is on homotopy theory. Chapter V covers basic material on geometric and abstract simplicial complexes and their subdivisions. Chapter VI is devoted to simplicial homology theory, Chapter VII covers various topics in algebraic topology, including relative homology, exact sequences, the Mayer-Vietoris sequence, and more. Finally, Chapter VIII discusses Cech homology.
There are a large number of illuminating examples, counter-examples and problems, both those which test the understanding and those which deepen it. The authors have also made a special effort to make this an "open-ended" book, i.e while many topics are covered, there is much beyond the confines of this book. In many instances they have attempted to show the direction in which further material may be found.
Topology is so fundamental, its influence is apparent in almost every other branch of mathematics, as well as such fields as symbolic logic, mechanics, geography, network theory, and even psychology. This well-written text offers a clear and careful exposition of this increasingly important discipline.
The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. The book consists of three parts. The first part comprises the basic core of a course in complex analysis for junior and senior undergraduates. The second part includes various more specialized topics as the argument principle, the Schwarz lemma and hyperbolic geometry, the Poisson integral, and the Riemann mapping theorem. The third part consists of a selection of topics designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics selected include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces. The three geometries, spherical, euclidean, and hyperbolic, are stressed. Exercises range from the very simple to the quite challenging, in all chapters. The book is based on lectures given over the years by the author at several places, particularly the Interuniversity Summer School at Perugia (Italy), and also UCLA, Brown University, Valencia (Spain), and La Plata (Argentina). A native of Minnesota, the author did his undergraduate work at Yale University and his graduate work at UC Berkeley. After spending some time at MIT and at the Universidad Nacional de La Plata (Argentina), he joined the faculty at UCLA in 1968. The author has published a number of research articles and several books on functional analysis and analytic function theory. he is currently involved in the California K-12 education scene.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.