Fundamentals of Electronics: Book 2: Amplifiers: Analysis and Design

Morgan & Claypool Publishers
Free sample

This book, Amplifiers: Analysis and Design, is the second of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters that describe the fundamentals of amplifier performance. Beginning with a review of two-port analysis, the first chapter introduces the modeling of the response of transistors to AC signals. Basic one-transistor amplifiers are extensively discussed. The next chapter expands the discussion to multiple transistor amplifiers. The coverage of simple amplifiers is concluded with a chapter that examines power amplifiers. This discussion defines the limits of small-signal analysis and explores the realm where these simplifying assumptions are no longer valid and distortion becomes present. The final chapter concludes the book with the first of two chapters in Fundamental of Electronics on the significant topic of feedback amplifiers. Fundamentals of Electronics has been designed primarily for use in an upper division course in electronics for electrical engineering students. Typically such a course spans a full academic years consisting of two semesters or three quarters. As such, Amplifiers: Analysis and Design, and two other books, Electronic Devices and Circuit Applications, and Active Filters and Amplifier Frequency Response, form an appropriate body of material for such a course. Secondary applications include the use with Electronic Devices and Circuit Applications in a one-semester electronics course for engineers or as a reference for practicing engineers.
Read more
Collapse

About the author

Thomas Schubert received BS, MS, and PhD degrees in Electrical Engineering from the University of California at Irvine (UCI). He was a member of the first engineering graduating class and the first triple-degree recipient in engineering at UCI. His doctoral work discussed the propagation of polarized light in anisotropic media.

Dr. Schubert arrived at the University of San Diego in August, 1987 as one of the two founding faculty of its new Engineering Program. From 1997–2003, he led the Department as Chairman, a position that became Director of Engineering Programs during his leadership tenure. Prior to coming to USD, he was at the Space and Communications Division of Hughes Aircraft Company, the University of Portland, and Portland State University. He is a Registered Professional Engineer in the State of Oregon.

In 2012, Dr. Schubert was awarded the Robert G. Quinn Award by the American Society of Engineering Education "in recognition of outstanding contributions in providing and promoting excellence in engineering experimentation and laboratory instruction."

Ernest Kim received his B.S.E.E. from the University of Hawaii at Manoa in Honolulu, Hawaii in 1977, an M.S.E.E. in 1980 and Ph.D. in Electrical Engineering in 1987 from New Mexico State University in Las Cruces, New Mexico. His dissertation was on precision near-field exit radiation measurements from optical fibers.

Dr. Kim worked as an Electrical Engineer for the University of Hawaii at the Naval Ocean Systems Center, Hawaii Labs at Kaneohe Marine Corps Air Station after graduating with his B.S.E.E. Upon completing his M.S.E.E., he was an electrical engineer with the National Bureau of Standards in Boulder, Colorado designing hardware for precision fiber optic measurements. He then entered the commercial sector as a staff engineer with Burroughs Corporation in San Diego, California developing fiber optic LAN systems. He left Burroughs for Tacan/IPITEK Corporation as Manager of Electro-Optic Systems developing fiber optic CATV hardware and systems. In 1990 he joined the faculty of the University of San Diego. He remains an active consultant in radio frequency and analog circuit design, and teaches review courses for the engineering Fundamentals Examination.

Dr. Kim is a member of the IEEE, ASEE, and CSPE. He is a Licensed Professional Electrical Engineer in California.

Read more
Collapse
Loading...

Additional Information

Publisher
Morgan & Claypool Publishers
Read more
Collapse
Published on
Oct 5, 2015
Read more
Collapse
Pages
366
Read more
Collapse
ISBN
9781627055659
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Technology & Engineering / Electronics / Circuits / General
Technology & Engineering / Electronics / Semiconductors
Technology & Engineering / Electronics / Transistors
Technology & Engineering / Superconductors & Superconductivity
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
SiGe HBTs are the most mature of the Si heterostructure devices and not surprisingly the most completely researched and discussed in the technical literature. However, new effects and nuances of device operation are uncovered year-after-year as transistor scaling advances and application targets march steadily upward in frequency and sophistication. Providing a comprehensive treatment of SiGe HBTs, Silicon Heterostructure Devices covers an amazingly diverse set of topics, ranging from basic transistor physics to noise, radiation effects, reliability, and TCAD simulation.

Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this text explores SiGe heterojunction bipolar transistors (HBTs), heterostructure FETs, various other heterostructure devices, as well as optoelectronic components. The book provides an overview, characteristics, and derivative applications for each device covered. It discusses device physics, broadband noise, performance limits, reliability, engineered substrates, and self-assembling nanostructures. Coverage of optoelectronic devices includes Si/SiGe LEDs, near-infrared detectors, photonic transistors for integrated optoelectronics, and quantum cascade emitters. In addition to this substantial collection of material, the book concludes with a look at the ultimate limits of SiGe HBTs scaling. It contains easy-to-reference appendices on topics including the properties of silicon and germanium, the generalized Moll-Ross relations, and the integral charge-control model, and sample SiGe HBT compact model parameters.

This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to lessen the possibility of misunderstandings at a higher level. The difference between linear and non-linear operation is explored through the use of a variety of circuit examples including amplifiers constructed with operational amplifiers as the fundamental component and elementary digital logic gates constructed with various transistor types. Fundamentals of Electronics has been designed primarily for use in an upper division course in electronics for electrical engineering students. Typically such a course spans a full academic years consisting of two semesters or three quarters. As such, Electronic Devices and Circuit Applications, and the following two books, Amplifiers: Analysis and Design and Active Filters and Amplifier Frequency Response, form an appropriate body of material for such a course. Secondary applications include the use in a one-semester electronics course for engineers or as a reference for practicing engineers.
Want to know how to use an electronic component? This first book of a three-volume set includes key information on electronics parts for your projects—complete with photographs, schematics, and diagrams. You’ll learn what each one does, how it works, why it’s useful, and what variants exist. No matter how much you know about electronics, you’ll find fascinating details you’ve never come across before.

Convenient, concise, well-organized, and precise

Perfect for teachers, hobbyists, engineers, and students of all ages, this reference puts reliable, fact-checked information right at your fingertips—whether you’re refreshing your memory or exploring a component for the first time. Beginners will quickly grasp important concepts, and more experienced users will find the specific details their projects require.

Unique: the first and only encyclopedia set on electronic components, distilled into three separate volumes Incredibly detailed: includes information distilled from hundreds of sources Easy to browse: parts are clearly organized by component type Authoritative: fact-checked by expert advisors to ensure that the information is both current and accurate Reliable: a more consistent source of information than online sources, product datasheets, and manufacturer’s tutorials Instructive: each component description provides details about substitutions, common problems, and workarounds Comprehensive: Volume 1 covers power, electromagnetism, and discrete semi-conductors; Volume 2 includes integrated circuits, and light and sound sources; Volume 3 covers a range of sensing devices.
This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis. It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or both. Fourier analysis is discussed in the context of transient analysis. Next, we make a treatment of AC analysis to simulate the frequency response of a circuit. Then, we introduce diodes, transistors, and circuits composed by them and perform DC, transient, and AC analyses. The book ends with simulation of digital circuits. A practical approach is followed through the chapters, using step-by-step examples to introduce new Multisim circuit elements, tools, analyses, and virtual instruments for measurement. The examples are clearly commented and illustrated. The different tools available on Multisim are used when appropriate so readers learn which analyses are available to them. This is part of the learning outcomes that should result after each set of end-of-chapter exercises is worked out. Table of Contents: Introduction to Circuit Simulation / Resistive Circuits / Time Domain Analysis -- Transient Analysis / Frequency Domain Analysis -- AC Analysis / Semiconductor Devices / Digital Circuits
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.