Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing

Springer Science & Business Media
Free sample

Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing is an up-to-date overview of audio and video content analysis. Included is extensive treatment of audiovisual data segmentation, indexing and retrieval based on multimodal media content analysis, and content-based management of audio data. In addition to the commonly studied audio types such as speech and music, the authors have included hybrid types of sounds that contain more than one kind of audio component such as speech or environmental sound with music in the background. Emphasis is also placed on semantic-level identification and classification of environmental sounds. The authors introduce a new generic audio retrieval system on top of the audio archiving schemes. Both theoretical analysis and implementation issues are presented. The developing MPEG-7 standards are explored.
Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing will be especially useful to researchers and graduate level students designing and developing fully functional audiovisual systems for audio/video content parsing of multimedia streams.
Read more

Reviews

Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Mar 9, 2013
Read more
Pages
136
Read more
ISBN
9781475733396
Read more
Language
English
Read more
Genres
Computers / Desktop Applications / Design & Graphics
Computers / Information Theory
Computers / Interactive & Multimedia
Computers / Programming / Algorithms
Computers / Software Development & Engineering / General
Computers / System Administration / Storage & Retrieval
Technology & Engineering / Electronics / General
Technology & Engineering / Imaging Systems
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Ying Li
Video Content Analysis Using Multimodal Information For Movie Content Extraction, Indexing and Representation is on content-based multimedia analysis, indexing, representation and applications with a focus on feature films. Presented are the state-of-art techniques in video content analysis domain, as well as many novel ideas and algorithms for movie content analysis based on the use of multimodal information. The authors employ multiple media cues such as audio, visual and face information to bridge the gap between low-level audiovisual features and high-level video semantics. Based on sophisticated audio and visual content processing such as video segmentation and audio classification, the original video is re-represented in the form of a set of semantic video scenes or events, where an event is further classified as a 2-speaker dialog, a multiple-speaker dialog, or a hybrid event. Moreover, desired speakers are simultaneously identified from the video stream based on either a supervised or an adaptive speaker identification scheme. All this information is then integrated together to build the video's ToC (table of content) as well as the index table. Finally, a video abstraction system, which can generate either a scene-based summary or an event-based skim, is presented by exploiting the knowledge of both video semantics and video production rules. This monograph will be of great interest to research scientists and graduate level students working in the area of content-based multimedia analysis, indexing, representation and applications as well s its related fields.
Sholom M. Weiss
This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies.

This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation.

Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable industrial-quality text-mining software and other supplementary instruction material.

Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.

Sholom M. Weiss
One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.
Huan Chen
Due to the great success and enormous impact of IP networks, In ternet access (such as sending and receiving e-mails) and web brows ing have become the ruling paradigm for next generation wireless systems. On the other hand, great technological and commercial success of services and applications is being witnessed in mobile wire less communications with examples of cellular, pes voice telephony and wireless LANs. The service paradigm has thus shifted from the conventional voice service to seamlessly integrated high quality mul timedia transmission over broadband wireless mobile networks. The multimedia content may include data, voice, audio, image, video and so on. With availability of more powerful portable devices, such as PDA, portable computer and cellular phone, coupled with the easier access to the core network (using a mobile device), the number of mobile users and the demand for multimedia-based applications is increasing rapidly. As a result, there is an urgent need for a sys tem that supports heterogeneous multimedia services and provides seamless access to the desired resources via wireless connections. Therefore, the convergence of multimedia communication and wireless mobile networking technologies into the next generation wireless multimedia (WMM) networks with the vision of "anytime, anywhere, anyform" information system is the certain trend in the foreseeable future. However, successful combination of these two technologies presents many challenges such as available spectral bandwidth, energy efficiency, seamless end-to-end communication, robustness, security, etc.
Ying Li
Video Content Analysis Using Multimodal Information For Movie Content Extraction, Indexing and Representation is on content-based multimedia analysis, indexing, representation and applications with a focus on feature films. Presented are the state-of-art techniques in video content analysis domain, as well as many novel ideas and algorithms for movie content analysis based on the use of multimodal information. The authors employ multiple media cues such as audio, visual and face information to bridge the gap between low-level audiovisual features and high-level video semantics. Based on sophisticated audio and visual content processing such as video segmentation and audio classification, the original video is re-represented in the form of a set of semantic video scenes or events, where an event is further classified as a 2-speaker dialog, a multiple-speaker dialog, or a hybrid event. Moreover, desired speakers are simultaneously identified from the video stream based on either a supervised or an adaptive speaker identification scheme. All this information is then integrated together to build the video's ToC (table of content) as well as the index table. Finally, a video abstraction system, which can generate either a scene-based summary or an event-based skim, is presented by exploiting the knowledge of both video semantics and video production rules. This monograph will be of great interest to research scientists and graduate level students working in the area of content-based multimedia analysis, indexing, representation and applications as well s its related fields.
Sholom M. Weiss
This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies.

This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation.

Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable industrial-quality text-mining software and other supplementary instruction material.

Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.

Sholom M. Weiss
One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.
Huan Chen
Due to the great success and enormous impact of IP networks, In ternet access (such as sending and receiving e-mails) and web brows ing have become the ruling paradigm for next generation wireless systems. On the other hand, great technological and commercial success of services and applications is being witnessed in mobile wire less communications with examples of cellular, pes voice telephony and wireless LANs. The service paradigm has thus shifted from the conventional voice service to seamlessly integrated high quality mul timedia transmission over broadband wireless mobile networks. The multimedia content may include data, voice, audio, image, video and so on. With availability of more powerful portable devices, such as PDA, portable computer and cellular phone, coupled with the easier access to the core network (using a mobile device), the number of mobile users and the demand for multimedia-based applications is increasing rapidly. As a result, there is an urgent need for a sys tem that supports heterogeneous multimedia services and provides seamless access to the desired resources via wireless connections. Therefore, the convergence of multimedia communication and wireless mobile networking technologies into the next generation wireless multimedia (WMM) networks with the vision of "anytime, anywhere, anyform" information system is the certain trend in the foreseeable future. However, successful combination of these two technologies presents many challenges such as available spectral bandwidth, energy efficiency, seamless end-to-end communication, robustness, security, etc.
©2017 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.