Business Metadata: Capturing Enterprise Knowledge

Morgan Kaufmann
4
Free sample

Business Metadata: Capturing Enterprise Knowledge is the first book that helps businesses capture corporate (human) knowledge and unstructured data, and offer solutions for codifying it for use in IT and management. Written by Bill Inmon, one of the fathers of the data warehouse and well-known author, the book is filled with war stories, examples, and cases from current projects. It includes a complete metadata acquisition methodology and project plan to guide readers every step of the way, and sample unstructured metadata for use in self-testing and developing skills.

This book is recommended for IT professionals, including those in consulting, working on systems that will deliver better knowledge management capability. This includes people in these positions: data architects, data analysts, SOA architects, metadata analysts, repository (metadata data warehouse) managers as well as vendors that have a metadata component as part of their systems or tools.

  • First book that helps businesses capture corporate (human) knowledge and unstructured data, and offer solutions for codifying it for use in IT and management
  • Written by Bill Inmon, one of the fathers of the data warehouse and well-known author, and filled with war stories, examples, and cases from current projects
  • Very practical, includes a complete metadata acquisition methodology and project plan to guide readers every step of the way
  • Includes sample unstructured metadata for use in self-testing and developing skills
Read more

About the author

Best known as the “Father of Data Warehousing, Bill Inmon has become the most prolific and well-known author worldwide in the big data analysis, data warehousing and business intelligence arena. In addition to authoring more than 50 books and 650 articles, Bill has been a monthly columnist with the Business Intelligence Network, EIM Institute and Data Management Review. In 2007, Bill was named by Computerworld as one of the “Ten IT People Who Mattered in the Last 40 Years of the computer profession. Having 35 years of experience in database technology and data warehouse design, he is known globally for his seminars on developing data warehouses and information architectures. Bill has been a keynote speaker in demand for numerous computing associations, industry conferences and trade shows. Bill Inmon also has an extensive entrepreneurial background: He founded Pine Cone Systems, later named Ambeo in 1995, and founded, and took public, Prism Solutions in 1991. Bill consults with a large number of Fortune 1000 clients, and leading IT executives on Data Warehousing, Business Intelligence, and Database Management, offering data warehouse design and database management services, as well as producing methodologies and technologies that advance the enterprise architectures of large and small organizations world-wide. He has worked for American Management Systems and Coopers & Lybrand. Bill received his Bachelor of Science degree in Mathematics from Yale University, and his Master of Science degree in Computer Science from New Mexico State University.

Lowell is responsible for directing thought leadership and advisory services in the Customer Success practice of Collibra. He has been a practitioner in the data management industry for three decades and is recognized as a leader in data governance, analytics and data quality having hands-on experience with implementations across most industries. Lowell is a co-author of the book “Business Metadata; Capturing Enterprise Knowledge . Lowell is a past adjunct professor at Daniels College of Business, Denver University, a past President and current VP of Education for DAMA-I Rocky Mountain Chapter (RMC), a DAMA-I Charter member and member of the Data Governance Professionals Organization. He is also an author and reviewer on the DAMA-I Data Management Book of Knowledge (DMBOK). He focuses on practical data governance practices and has trained thousands of professionals in data governance, data warehousing, data management and data quality techniques. You can read his Data Governance Blogs at https://www.collibra.com/blog/

Read more
5.0
4 total
Loading...

Additional Information

Publisher
Morgan Kaufmann
Read more
Published on
Jul 28, 2010
Read more
Pages
312
Read more
ISBN
9780080552200
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Business & Economics / Business Mathematics
Computers / Databases / General
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
DW 2.0: The Architecture for the Next Generation of Data Warehousing is the first book on the new generation of data warehouse architecture, DW 2.0, by the father of the data warehouse. The book describes the future of data warehousing that is technologically possible today, at both an architectural level and technology level.

The perspective of the book is from the top down: looking at the overall architecture and then delving into the issues underlying the components. This allows people who are building or using a data warehouse to see what lies ahead and determine what new technology to buy, how to plan extensions to the data warehouse, what can be salvaged from the current system, and how to justify the expense at the most practical level. This book gives experienced data warehouse professionals everything they need in order to implement the new generation DW 2.0.

It is designed for professionals in the IT organization, including data architects, DBAs, systems design and development professionals, as well as data warehouse and knowledge management professionals.

* First book on the new generation of data warehouse architecture, DW 2.0.
* Written by the "father of the data warehouse", Bill Inmon, a columnist and newsletter editor of The Bill Inmon Channel on the Business Intelligence Network.
* Long overdue comprehensive coverage of the implementation of technology and tools that enable the new generation of the DW: metadata, temporal data, ETL, unstructured data, and data quality control.
Managing Time in Relational Databases: How to Design, Update and Query Temporal Data introduces basic concepts that will enable businesses to develop their own framework for managing temporal data. It discusses the management of uni-temporal and bi-temporal data in relational databases, so that they can be seamlessly accessed together with current data; the encapsulation of temporal data structures and processes; ways to implement temporal data management as an enterprise solution; and the internalization of pipeline datasets.

The book is organized into three parts. Part 1 traces the history of temporal data management and presents a taxonomy of bi-temporal data management methods. Part 2 provides an introduction to Asserted Versioning, covering the origins of Asserted Versioning; core concepts of Asserted Versioning; the schema common to all asserted version tables, as well as the various diagrams and notations used in the rest of the book; and how the basic scenario works when the target of that activity is an asserted version table. Part 3 deals with designing, maintaining, and querying asserted version databases. It discusses the design of Asserted Versioning databases; temporal transactions; deferred assertions and other pipeline datasets; Allen relationships; and optimizing Asserted Versioning databases.

Integrates an enterprise-wide viewpoint with a strong conceptual model of temporal data management allowing for realistic implementation of database application development.Provides a true practical guide to the different possible methods of time-oriented databases with techniques of using existing funtionality to solve real world problems within an enterprise data architecture environment.Written by IT professionals for IT professionals, this book employs a heavily example-driven approach which reinforces learning by showing the results of puting the techniques discussed into practice.
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration is a handbook for analysts, engineers, and managers involved in developing data mining models in business and government. As you’ll discover, fuzzy systems are extraordinarily valuable tools for representing and manipulating all kinds of data, and genetic algorithms and evolutionary programming techniques drawn from biology provide the most effective means for designing and tuning these systems.

You don’t need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system.

Written to provide analysts, engineers, and managers with the background and specific instruction needed to develop and implement more effective data mining systemsHelps you to understand the trade-offs implicit in various models and model architecturesProvides extensive coverage of fuzzy SQL querying, fuzzy clustering, and fuzzy rule inductionLays out a roadmap for exploring data, selecting model system measures, organizing adaptive feedback loops, selecting a model configuration, implementing a working model, and validating the final modelIn an extended example, applies evolutionary programming techniques to solve a complicated scheduling problemPresents examples in C, C++, Java, and easy-to-understand pseudo-codeExtensive online component, including sample code and a complete data mining workbench
Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or architecture it can’t be used to its full potential. Data Architecture a Primer for the Data Scientist addresses the larger architectural picture of how Big Data fits with the existing information infrastructure, an essential topic for the data scientist.

Drawing upon years of practical experience and using numerous examples and an easy to understand framework. W.H. Inmon, and Daniel Linstedt define the importance of data architecture and how it can be used effectively to harness big data within existing systems. You’ll be able to:

Turn textual information into a form that can be analyzed by standard tools.Make the connection between analytics and Big DataUnderstand how Big Data fits within an existing systems environment Conduct analytics on repetitive and non-repetitive dataDiscusses the value in Big Data that is often overlooked, non-repetitive data, and why there is significant business value in using itShows how to turn textual information into a form that can be analyzed by standard tools.Explains how Big Data fits within an existing systems environment Presents new opportunities that are afforded by the advent of Big Data Demystifies the murky waters of repetitive and non-repetitive data in Big Data
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.