Integrated Vehicle Dynamics and Control

Sold by John Wiley & Sons
Free sample

A comprehensive overview of integrated vehicle system dynamics exploring the fundamentals and new and emerging developments

This book provides a comprehensive coverage of vehicle system dynamics and control, particularly in the area of integrated vehicle dynamics control. The book consists of two parts, (1) development of individual vehicle system dynamic model and control methodology; and (2) development of integrated vehicle dynamic model and control methodology. The first part focuses on investigating vehicle system dynamics and control according to the three directions of vehicle motions, including longitudinal, vertical, and lateral. Corresponding individual control systems, e.g. Anti-lock Brake System (ABS), Active Suspension, Electric Power Steering System (EPS), are introduced and developed respectively.

Particular attention is paid in the second part of the book to develop integrated vehicle dynamic control system. Integrated vehicle dynamics control system is an advanced system that coordinates all the chassis control systems and components to improve the overall vehicle performance including safety, comfort, and economy. Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The research topic on integrated vehicle dynamics control is investigated comprehensively and intensively in the book through both theoretical analysis and experimental study. In this part, two types of control architectures, i.e. centralized and multi-layer, have been developed and compared to demonstrate their advantages and disadvantages.

  • Integrated vehicle dynamics control is a hot topic in automotive research; this is one of the few books to address both theory and practice of integrated systems
  • Comprehensively explores the research area of integrated vehicle dynamics and control through both theoretical analysis and experimental study
  • Addresses a full range of vehicle system topics including tyre dynamics, chassis systems, control architecture, 4 wheel steering system and design of control systems using Linear Matrix Inequality (LMI) Method
Read more
Collapse

About the author

Wuwei Chen is a Professor at the School of Mechanical and Automotive Engineering, Hefei University of Technology, China. Dr. Chen has been working in the area of vehicle system dynamics, particularly in integrated control of vehicle dynamic systems, for more than 20 years. He has been recognized as a leading researcher in developing integrated vehicle dynamic control systems through both theoretical analysis and experimental investigation.
Dr. Chen was a guest editor of International Journal of Vehicle Design for a special issue on "Vehicle Control Systems". He is also a member of the editorial boards of Journal of Vibration Engineering (in Chinese) and Transactions of the Chinese Society for Agricultural Machinery. Dr. Chen has authored and co-authored over 150 journal and conference papers, and has made numerous presentations at scientific and engineering conferences.

Hansong Xiao is now working with Hanergy Product Development Group, China. He received his Ph.D.in Mechanical Engineering at the University of Toronto, Canada. His current research interests include Engineering Optimization, Dynamic Analysis, and Automotive Electronic Control.

Qidong Wang, Ph.D, Professor at School of Mechanical and Automotive Engineering, Hefei University of Technology. Wang has been doing research in the field of vehicle dynamics and control for over 20 years and has published over 80 papers. Linfeng Zhao, Ph.D, Associate Professor at School of Mechanical and Automotive Engineering, Hefei University of Technology. Zhao's interest is vehicle dynamics and control technologies, he has published over 10 journal papers.

Maofei Zhu, Hefei Institutes of Physical Science, Chinese Academy of Sciences.

Read more
Collapse
Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Collapse
Published on
Mar 31, 2016
Read more
Collapse
Pages
400
Read more
Collapse
ISBN
9781118380017
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Technology & Engineering / Manufacturing
Technology & Engineering / Mechanical
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
A mathematically rigorous explanation of how manufacturing deviations and damage on the working surfaces of gear teeth cause transmission-error contributions to vibration excitations

Some gear-tooth working-surface manufacturing deviations of significant amplitude cause negligible vibration excitation and noise, yet others of minuscule amplitude are a source of significant vibration excitation and noise. Presently available computer-numerically-controlled dedicated gear metrology equipment can measure such error patterns on a gear in a few hours in sufficient detail to enable accurate computation and diagnosis of the resultant transmission-error vibration excitation. How to efficiently measure such working-surface deviations, compute from these measurements the resultant transmission-error vibration excitation, and diagnose the manufacturing source of the deviations, is the subject of this book.

Use of the technology in this book will allow quality spot checks to be made on gears being manufactured in a production run, to avoid undesirable vibration or noise excitation by the manufactured gears. Furthermore, those working in academia and industry needing a full mathematical understanding of the relationships between tooth working-surface deviations and the vibration excitations caused by these deviations will find the book indispensable for applications pertaining to both gear-quality and gear-health monitoring.

Key features:

Provides a very efficient method for measuring parallel-axis helical or spur gears in sufficient detail to enable accurate computation of transmission-error contributions from working-surface deviations, and algorithms required to carry out these computations, including examples Provides algorithms for computing the working-surface deviations causing any user-identified tone, such as ‘ghost tones,’ or ‘sidebands’ of the tooth-meshing harmonics, enabling diagnosis of their manufacturing causes, including examples Provides explanations of all harmonics observed in gear-caused vibration and noise spectra. Enables generation of three-dimensional displays and detailed numerical descriptions of all measured and computed working-surface deviations, including examples
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.