3D Dynamic Scene Analysis

Springer Series in Information Sciences

Book 27
Springer Science & Business Media
Free sample

he problem of analyzing sequences of images to extract three-dimensional T motion and structure has been at the heart of the research in computer vi sion for many years. It is very important since its success or failure will determine whether or not vision can be used as a sensory process in reactive systems. The considerable research interest in this field has been motivated at least by the following two points: 1. The redundancy of information contained in time-varying images can over come several difficulties encountered in interpreting a single image. 2. There are a lot of important applications including automatic vehicle driv ing, traffic control, aerial surveillance, medical inspection and global model construction. However, there are many new problems which should be solved: how to effi ciently process the abundant information contained in time-varying images, how to model the change between images, how to model the uncertainty inherently associated with the imaging system and how to solve inverse problems which are generally ill-posed. There are of course many possibilities for attacking these problems and many more remain to be explored. We discuss a few of them in this book based on work carried out during the last five years in the Computer Vision and Robotics Group at INRIA (Institut National de Recherche en Informatique et en Automatique).
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
300
Read more
Collapse
ISBN
9783642581489
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Computers / Computer Graphics
Computers / Computer Vision & Pattern Recognition
Computers / Intelligence (AI) & Semantics
Computers / Optical Data Processing
Computers / Software Development & Engineering / General
Language Arts & Disciplines / Library & Information Science / General
Science / Physics / Mathematical & Computational
Technology & Engineering / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Since the second edition of this book came out in early 1997, the number of scientific papers published on the Self-Organizing Map (SOM) has increased from about 1500 to some 4000. Also, two special workshops dedicated to the SOM have been organized, not to mention numerous SOM sessions in neural network conferences. In view of this growing interest it was felt desirable to make extensive revisions to this book. They are of the following nature. Statistical pattern analysis has now been approached more carefully than earlier. A more detailed discussion of the eigenvectors and eigenvalues of symmetric matrices, which are the type usually encountered in statistics, has been included in Sect. 1.1.3: also, new probabilistic concepts, such as factor analysis, have been discussed in Sect. 1.3.1. A survey of projection methods (Sect. 1.3.2) has been added, in order to relate the SOM to classical paradigms. Vector Quantization is now discussed in one main section, and derivation of the point density of the codebook vectors using the calculus of variations has been added, in order to familiarize the reader with this otherwise com plicated statistical analysis. It was also felt that the discussion of the neural-modeling philosophy should include a broader perspective of the main issues. A historical review in Sect. 2.2, and the general philosophy in Sects. 2.3, 2.5 and 2.14 are now expected to especially help newcomers to orient themselves better amongst the profusion of contemporary neural models.
The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation.

The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of massive parallel computing devices.

The book will provide attractive reading for a general audience because it has do-it-yourself appeal: all the computer experiments presented within it can be implemented with minimal knowledge of programming. The simplicity yet substantial functionality of the cellular automaton approach, and the transparency of the algorithms proposed, makes the text ideal supplementary reading for courses on image processing, parallel computing, automata theory and applications.

The history of computer-aided face recognition dates back to the 1960s, yet the problem of automatic face recognition – a task that humans perform routinely and effortlessly in our daily lives – still poses great challenges, especially in unconstrained conditions.

This highly anticipated new edition of the Handbook of Face Recognition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems. After a thorough introductory chapter, each of the following 26 chapters focus on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions.

Topics and features: fully updated, revised and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated face detection and recognition systems; examines the design of accurate, reliable, and secure face recognition systems; provides comprehensive coverage of face detection, tracking, alignment, feature extraction, and recognition technologies, and issues in evaluation, systems, security, and applications; contains numerous step-by-step algorithms; describes a broad range of applications from person verification, surveillance, and security, to entertainment; presents contributions from an international selection of preeminent experts; integrates numerous supporting graphs, tables, charts, and performance data.

This practical and authoritative reference is the essential resource for researchers, professionals and students involved in image processing, computer vision, biometrics, security, Internet, mobile devices, human-computer interface, E-services, computer graphics and animation, and the computer game industry.

Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.