Mirror Symmetry and Algebraic Geometry

Mathematical Surveys and Monographs

Book 68
American Mathematical Soc.
Free Sample

Mathematicians wanting to get into the field ... will find a very well written and encyclopaedic account of the mathematics which was needed in, and was developed from, what now might be termed classical mirror symmetry. --Bulletin of the LMS The book is highly recommended for everyone who wants to learn about the fascinating recent interplay between physics and mathematics. --Mathematical Reviews Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is a completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem.
Read more
Collapse

About the author

David A. Cox, Amherst College, MA
Read more
Collapse
Loading...

Additional information

Publisher
American Mathematical Soc.
Read more
Collapse
Published on
31 Dec 1999
Read more
Collapse
Pages
469
Read more
Collapse
ISBN
9780821821275
Read more
Collapse
Read more
Collapse
Best for
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Geometry / Algebraic
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Seller
Google Commerce Ltd
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on E Ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help Centre instructions to transfer the files to supported eReaders.
In preparing this monograph I had three objectives. First, I wanted to introduce the reader to some topics in mathematics that seldom receive coverage in typical high school and college math programs. The topics include axioms, sets, logic, truth tables and plausible reasoning. In the sections on logic and plausible reasoning, I wanted the reader to see how to transition from formal (mathematical) logic to plausible logic when analyzing the reliability of a source and the credibility of its information content. Readers whose formal education did not cover these topics were not given the opportunity to develop the skills necessary to compete successfully in the world of finance, business and management. These readers will find the information on sets, logic, truth tables and plausible reasoning especially useful. Included are examples that show how the new analysis skills can help analysts draw conclusions and make important decisions from subjective information supplied by less than reliable sources. Second, I wanted the reader to see how subjects in the foundations area of mathematics are used to develop the real number system and its extension through transfinite cardinal numbers. The development of the number system starts with a description of the history of numbers. Readers will find the history both interesting and understandable. The real number continuum is identified as consisting of seven sets of numbers. Each set of numbers can stand alone. The number sets include the simple to understand natural numbers to the more abstract transcendental numbers. Each set is defined and included in a vocabulary consisting of the natural numbers N, integers Z, the rational numbers F, the algebraic numbers A, transcendental numbers T, irrational numbers I, and real numbers R. Venn diagrams are used to explain the relationships existing among the seven sets. The relationships allow the reader to understand the role played by sets and logic in the development of the number system. Included In the development of the real number system are examples of base2 numbers and the algorithms used to convert between base 2 and base 10 numbers. Power Sets are introduced to show how the size of sets can be increased exponentially beyond the cardinal numbers N0 and c. Finally, through exponentiation, cardinal numbers are generated beyond the N0
An exciting approach to the history and mathematics of number theory

“. . . the author’s style is totally lucid and very easy to read . . .the result is indeed a wonderful story.” —Mathematical Reviews

Written in a unique and accessible style for readers of varied mathematical backgrounds, the Second Edition of Primes of the Form p = x2+ ny2 details the history behind how Pierre de Fermat’s work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. The book also illustrates how results of Euler and Gauss can be fully understood only in the context of class field theory, and in addition, explores a selection of the magnificent formulas of complex multiplication.

Primes of the Form p = x2 + ny2, Second Edition focuses on addressing the question of when a prime p is of the form x2 + ny2, which serves as the basis for further discussion of various mathematical topics. This updated edition has several new notable features, including:

• A well-motivated introduction to the classical formulation of class field theory

• Illustrations of explicit numerical examples to demonstrate the power of basic theorems in various situations

• An elementary treatment of quadratic forms and genus theory

• Simultaneous treatment of elementary and advanced aspects of number theory

• New coverage of the Shimura reciprocity law and a selection of recent work in an updated bibliography

Primes of the Form p = x2 + ny2, Second Edition is both a useful reference for number theory theorists and an excellent text for undergraduate and graduate-level courses in number and Galois theory.

©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United KingdomLanguage: English (United Kingdom)All prices include VAT.
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.